Глава    7.   КРОВО-  И   ЛИМФООБРАЩЕНИЕ

Клетки многоклеточных организмов теряют непосредственный контакт с внешней средой и находятся в окружающей их жидкой сре­де— тканевой, или межклеточной, жидкости и т. д., от­куда черпают необходимые вещества и куда выделяют продукты об­мена.

Состав тканевой жидкости постоянно обновляется благодаря тому, что эта жидкость находится в тесном контакте с непрерывно дви­жущейся кровью. Из крови в тканевую жидкость проникают кис­лород и другие необходимые клеткам вещества; в кровь, оттекающую от тканей, поступают продукты обмена клеток. От тканей, помимо крови, оттекает лимфа, которая также уносит часть продуктов обмена.

Кровь движется по кровеносным сосудам благодаря периодиче­ским сокращениям сердца. Сердце и сосуды составляют си­стему   кровообращения.

Оттекающая от тканей венозная кровь поступает в правое пред­сердие, а оттуда в правый желудочек сердца. При сокращении его кровь нагнетается в легочную артерию. Протекая через легкие, она отдает СО2 и насыщается О2. Система легочных сосудов — легочные артерии, капилляры и вены — образует малый (легочный) круг кровообращения. Обогащенная кислородом кровь из легких по ле­гочным венам поступает в левое предсердие, а оттуда в левый желудочек. При сокращении последнего кровь нагнетается в аорту, артерии, артериолы и капилляры всех органов и тканей, а оттуда по венам притекает в правое предсердие. Система этих сосудов образует большой круг кровообращения (рис. 7.1).

7.1. ДЕЯТЕЛЬНОСТЬ СЕРДЦА

7.1.1. Электрические явления в сердце, проведение возбуждения

Сокращения сердца происходят вследствие периодически возни­кающих в сердечной мышце процессов возбуждения. Сердечная мышца (миокард) обладает рядом свойств, обеспечивающих ее не­прерывную ритмическую деятельность, — автоматией, возбудимо­стью, проводимостью, сократимостью.

Возбуждение в сердце возникает периодически под влиянием процессов, протекающих в нем самом. Это явление получило на­звание автоматии. Способностью к автоматии обладают опреде­ленные участки миокарда, состоящие из специфической (атипиче­ской) мышечной ткани, бедной миофибриллами, богатой саркоплаз­мой и напоминающей эмбриональную мышечную ткань. Специфическая мускулатура образует в сердце проводящую систему, состоящую из синусно-предсердного (синоатриального) узла — во­дителя ритма сердца, расположенного в стенке предсердия у устьев полых вен и предсердно-желудочкового (атриовентрикулярного) уз­ла, расположенного в нижней трети правого предсердия и межже­лудочковой перегородке. От этого узла берет начало предсердно-желудочковый пучок (пучок Гиса), прободающий предсердно-желудочковую перегородку и делящийся на правую и левую ножки, следующие в межжелудочковой перегородке. В области верхушки сердца ножки предсердно-желудочкового пучка загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волокна Пуркинье), погруженных в рабочий (сократительный) миокард желу­дочков (рис. 7.2).

Рис. 7.2. Строение проводящей сис­темы сердца и хронотопография рас­пространения возбуждения. SA — синоатриальный узел, AV — атриовентрикулярный узел. Цифры обозна­чают охват возбуждением отделов сердца в секундах от момента зарождения им­пульса в синоатриалыюм  узле.

7.1.1.1. Электрическая активность клеток миокарда

В естественных условиях клетки миокарда находятся в состоянии ритмической активности (возбуждения), поэтому об их потенциале покоя можно говорить лишь условно. У большинства клеток он составляет около 90 мВ и определяется почти целиком концентра­ционным градиентом ионов К+.

Потенциалы действия (ПД), зарегистрированные в разных от­делах сердца при помощи внутриклеточных микроэлектродов, су­щественно различаются по форме, амплитуде и длительности (рис. 7.3, А). На рис. 7.3, Б схематически показан ПД одиночной клетки миокарда желудочка. Для возникновения этого потенциала потребовалось деполяризовать мембрану на 30 мВ. В ПД различают следующие фазы: быструю начальную деполяризацию — фаза 1; медленную реполяризацию, так называемое плато — фаза 2; быст­рую реполяризацию — фаза 3; фазу покоя — фаза 4.

Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного по­тенциала (с —90 до +30 мВ).

Рис. 7.3. Различные типы потенциалов действия сердечных клеток, коррелированные с временным ходом ЭКГ.

А — конфигурация потенциалов действия кардиомиоцитов различных отделов сердца; С—А — синоатриальный узел: П — предсердие; А—В — предсердно-желудочковый (атриовентрикулярный) узел: ПЖ — предсердно-желудочковый пучок (пучок Гиса); ПП и ЛП — правая и левая ножки пучка; Ж — желудочки. 1—6 — потенциалы действия клеток миокарда; 7 — ЭКГ; Б — потенциал действия одиночной клетки миокарда; а — ПД желудочка. Стрелками показаны преобладающие потоки ионов Na+, Са2+, К+, ответственные за различные фазы (1—4) ПД; б — авторитмическая активность синусно-предсердного (синоатриального) узла.  Стрелками  показана  медленная диастолическая деполяризация.

Деполяризация мембраны вызывает активацию медленных на­трий-кальциевых каналов. Поток ионов Са2+ внутрь клетки по этим каналам приводит к развитию плато ПД (фаза 2). В период плато натриевые каналы инактивируются и клетка переходит в состояние абсолютной рефрактерности. Одновременно происходит активация калиевых каналов. Выходящий из клетки поток ионов К+ обеспе­чивает быструю реполяризацию мембраны (фаза 3), во время ко­торой кальциевые каналы закрываются, что ускоряет процесс ре­поляризации (поскольку падает входящий кальциевый ток, деполя­ризующий мембрану).

Реполяризация мембраны вызывает постепенное закрывание ка­лиевых и реактивацию натриевых каналов. В результате возбудимость миокардиальной клетки восстанавливается — это период так называемой относительной рефрактерности.

В клетках рабочего миокарда (предсердия, желудочки) мембран­ный потенциал (в интервалах между следующими друг за другом ПД) поддерживается на более или менее постоянном уровне. Однако в клетках синусно-предсердного узла, выполняющего роль водителя ритма сердца, наблюдается спонтанная диастолическая деполяриза­ция (фаза 4), при достижении критического уровня которой (при­мерно —50 мВ) возникает новый ПД (см. рис. 7.3, Б). На этом механизме основана авторитмическая активность указанных сердеч­ных клеток. Биологическая активность этих клеток имеет и другие важные особенности: 1) малую крутизну подъема ПД; 2) медленную реполяризацию (фаза 2), плавно переходящую в фазу быстрой реполяризации (фаза 3), во время которой мембранный потенциал достигает уровня —60 мВ (вместо —90 мВ в рабочем миокарде), после чего вновь начинается фаза медленной диастолической депо­ляризации. Сходные черты имеет электрическая активность клеток предсердно-желудочкового узла, однако скорость спонтанной диасто­лической деполяризации у них значительно ниже, чем у клеток синусно-предсердного узла, соответственно ритм их потенциальной автоматической активности меньше.

Ионные механизмы генерации электрических потенциалов в клетках водителя ритма полностью не расшифрованы. Установлено, что в развитии медленной диастолической деполяризации и мед­ленной восходящей фазы ПД клеток синусно-предсердного узла ведущую роль играют кальциевые каналы. Они проницаемы не только для ионов Са2+, но и для ионов Na+. Быстрые нат­риевые каналы не принимают участия в генерации ПД этих клеток.

Скорость развития медленной диастолической деполяризации ре­гулируется автономной (вегетативной) нервной системой. В случае влияния симпатической части медиатор норадреналин активирует медленные кальциевые каналы, вследствие чего скорость диастоли­ческой деполяризации увеличивается и ритм спонтанной активности возрастает. В случае влияния парасимпатической части медиатор АХ повышает калиевую проницаемость мембраны, что замедляет развитие диастолической деполяризации или прекращает ее, а также гиперполяризует мембрану. По этой причине происходит урежение ритма или прекращение автоматии.

Способность клеток миокарда в течение жизни человека нахо­диться в состоянии непрерывной ритмической активности обеспе­чивается эффективной работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na+, а в клетку возвращаются ионы К+. Ионы Са2+, проникшие в цитоплазму, поглощаются эндоплазматической сетью. Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках; работа насосов нарушается, вследствие чего уменьшается электрическая и механическая активность мио­кардиальных клеток.

7.1.1.2. Функции проводящей системы сердца

Спонтанная генерация ритмических импульсов является резуль­татом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Сущест­вует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков прово­дящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60—80 в минуту.

В обычных условиях автоматия всех нижерасположенных уча­стков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40—50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30—40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возник­нуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту.

Отличительной особенностью проводящей системы сердца явля­ется наличие в ее клетках большого количества межклеточных контактов — нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Бла­годаря наличию контактов миокард, состоящий из отдельных клеток, работает как единой целое. Существование большого количества межклеточных контактов увеличивает надежность проведения воз­буждения в миокарде.

Возникнув в синусно-предсердном узле, возбуждение распрост­раняется по предсердиям, достигая предсердно-желудочкового (атриовентрикулярного) узла. В сердце теплокровных животных суще­ствуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих про­водящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до пред­сердно-желудочкового пучка и сердечных проводящих миоцитов (волокна Пуркинье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

Следовательно, атриовентрикулярная задержка обеспечивает необ­ходимую последовательность (координацию) сокращений предсердий и желудочков.

Скорость распространения возбуждения в предсердно-желудочковом пучке и в диффузно расположенных сердечных проводящих миоцитах достигает 4,5—5 м/с, что в 5 раз больше скорости рас­пространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти од­новременно, т. е. синхронно (см. рис. 7.2). Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетатель­ной функции желудочков. Если бы возбуждение проводилось не через предсердно-желудочковый пучок, а по клеткам рабочего мио­карда, т. е. диффузно, то период асинхронного сокращения продол­жался бы значительно дольше, клетки миокарда вовлекались в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца: 1) ритмическую ге­нерацию импульсов (потенциалов действия); 2) необходимую по­следовательность (координацию) сокращений предсердий и желу­дочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

7.1.1.3. Рефрактерная фаза миокарда и экстрасистола

Потенциал действия миокарда желудочков длится около 0,3 с (более чем в 100 раз дольше, чем ПД скелетной мышцы). Во время ПД мембрана клетки становится невосприимчивой к действию других раздражителей, т. е. рефрактерной. Соотношения между фазами ПД миокарда и величиной его возбудимости показаны на рис. 7.4. Различают период абсолютны рефрактерности (продолжается 0,27 с, т. е. несколько короче длительности ПД; период относи­тельны рефрактерности, во время которого сердечная мышца может ответить сокращением лишь на очень сильные раздражения (продолжается 0,03 с), и короткий период супернормальной возбу­димости, когда сердечная мышца может отвечать сокращением на подпороговые раздражения.

Рис. 7.4. Соотношение изменений возбудимости мышцы сердца и потенциала дей­ствия.

1  — период абсолютной рсфрактерности; 2 — период относительной рефрактерности; 3 — период супернормальности; 4  —  период  полного восстановления  нормальной  возбудимости.

Сокращение (систола) миокарда продолжается около 0,3 с, что по времени примерно совпадает с рефрактерной фазой. Следова­тельно, в период сокращения сердце неспособно реагировать на другие раздражители. Наличие длительной рефрактерной фазы пре­пятствует развитию непрерывного укорочения (тетануса) сердечной мышцы, что привело бы к невозможности осуществления сердцем нагнетательной функции.

Раздражение, нанесенное на миокард в период расслабления (диастолы), когда его возбудимость частично или полностью вос­становлена, вызывает внеочередное сокращение сердца — экстра­систолу. Наличие или отсутствие экстрасистол, а также их характер определяется при регистрации электрокардиограммы.

7.1.1.4. Электрокардиограмма

Охват возбуждением огромного количества клеток рабочего мио­карда вызывает появление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позво­ляют регистрировать электрические потенциалы сердца с поверх­ности тела. Такая методика исследования электрической активности сердца, введенная в практику В. Эйнтховеном, А. Ф. Самойловым, Т. Льюисом, В. Ф. Зелениным и др., получила название электро­кардиографии, а регистрируемая с ее помощью кривая называется электрокардиограммой (ЭКГ). Электрокардиография широко при­меняется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ.

В настоящее время пользуются специальными приборами — электрокардиографами с электронными усилителями и осциллогра­фами. Запись кривых производят на движущейся бумажной ленте. Разработаны также приборы, при помощи которых записывают ЭКГ во время активной мышечной деятельности и на расстоянии от обследуемого. Эти приборы — телеэлектрокардиографы — основаны на принципе передачи ЭКГ на расстояние с помощью радиосвязи. Таким способом регистрируют ЭКГ у спортсменов во время сорев­нований, у космонавтов в космическом полете и т. д. Созданы приборы для передачи электрических потенциалов, возникающих при деятельности сердца, по телефонным проводам и записи ЭКГ в специализированном центре, находящемся на большом расстоянии от пациента.

Вследствие определенного положения сердца в грудной клетке и своеобразной формы тела человека электрические силовые линии, возникающие между возбужденными (—) и невозбужденными (+) участками сердца, распределяются по поверхности тела неравно­мерно. По этой причине в зависимости от места приложения элек­тродов форма ЭКГ и вольтаж ее зубцов будут различны. Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три так назы­ваемых стандартных отведения от конечностей: I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука — левая нога (рис. 7.5). Кроме того, регистрируют три униполярных усиленных отведения по Гольдбергеру: aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один и регистрируется разность потенциалов между объединенными и активными электродами. Так, при aVR активным является электрод, наложенный на правую руку, при aVL — на левую руку, при aVF — на левую ногу. Вильсоном предложена регистрация шести грудных отведений.

Рис. 7.5. Наложение электродов при стандартных отведениях электрокардиограммы (I—III) и формы ЭКГ, получаемых при этих отведениях.

Взаимоотношение величины зубцов в трех стандартных отведе­ниях было установлено Эйнтховеном. Он нашел, что электродви­жущая сила сердца, регистрируемая во II стандартном отведении, равна сумме электродвижущих сил в I и III отведениях. Выражением электродвижущей силы является высота зубцов, поэтому зубцы II отведения по своей величине равны алгебраической сумме зубцов I и III отведений.

Для отведения потенциалов от грудной клетки рекомендуют прикладывать первый электрод к одной из шести показанных на рис. 7.6 точек. Вторым электродом служат три соединенных вместе электрода, наложенных на обе руки и левую ногу. В этом случае форма ЭКГ отражает электрические изменения только на участке приложения грудного электрода. Объединенный электрод, прило­женный к трем конечностям, является индифферентным, или «ну­левым», так как его потенциал не изменяется на протяжении всего сердечного цикла. Такие электрокардиографические отведения на­зываются униполярными, или однополюсными. Эти отведения обоз­начаются латинской буквой V (V1, V2 и т. д.).

Рис. 7.6. Места наложения электродов при грудных отведениях электрокардиограммы (1—6) и формы ЭКГ, получаемых при этих отведениях. I—IV   —  межреберные  промежутки.

Нормальная ЭКГ человека, полученная во II стандартном отве­дении, приведена на рис. 7.7. При анализе ЭКГ определяют амп­литуду зубцов в мВ (mV), время их протекания в с, длительность сегментов — участков изопотенциальной линии между соседними зубцами и интервалов, включающих в себя зубец и прилегающий к нему сегмент.

Формирование ЭКГ (ее зубцов и интервалов) обусловлено рас­пространением возбуждения в сердце и отображает этот процесс. Зубцы возникают и развиваются, когда между участками возбу­димой системы имеется разность потенциалов, т. е. какая-то часть системы охвачена возбуждением, а другая нет. Изопотенциальная линия возникает в случае, когда в пределах возбудимой системы нет разности потенциалов, т. е. вся система не возбуждена или, наоборот, охвачена возбуждением. С позиций электрокардиологии, сердце состоит из двух возбудимых систем — двух мышц: мышцы предсердий и мышцы желудочков. Эти две мышцы разделены со­единительнотканной фиброзной перегородкой. Связь между двумя мышцами и передачу возбуждения осуществляет проводящая си­стема сердца. В силу того, что мышечная масса проводящей системы мала, генерируемые в ней потенциалы при обычных усилениях стандартных электрокардиографов не улавливаются. Следователь­но, зарегистрированная ЭКГ отражает последовательный охват возбуждением сократительного миокарда предсердий и же­лудочков.

Зубец Р (см. рис. 7.7) отображает охват возбуждением пред­сердий и получил название предсердного. Далее возбуждение рас­пространяется на предсердно-желудочковый узел и движется по проводящей системе желудочков. В это время электрокардиограф регистрирует изопотенциальную линию (оба предсердия полностью возбуждены, оба желудочка еще не возбуждены, а движение воз­буждения по проводящей системе желудочков не улавливается элек­трокардиографом — сегмент PQ на ЭКГ).

Рис. 7.7. Электрокардиограмма во II стандартном отведении.

В предсердиях возбуждение распространяется преимущественно по сократительному миокарду лавинообразно от синусно-предсердной к предсердно-желудочковой области. Скорость распространения возбуждения по специализированным внутрипредсердным пучкам в норме примерно равна скорости распространения по сократительному миокарду предсердия, поэтому охват возбуждением предсердий ото­бражается монофазным зубцом Р. Охват возбуждением желудочков осуществляется посредством передачи возбуждения с элементов про­водящей системы на сократительный миокард, что обусловливает сложный характер комплекса QRS, отражающего охват возбужде­нием желудочков. При этом зубец Q обусловлен возбуждением верхушки сердца, правой сосочковой мышцы и внутренней повер­хности желудочков, зубец R — возбуждением основания сердца и наружной поверхности желудочков. Процесс полного охвата воз­буждением миокарда желудочков завершается к окончанию форми­рования зубца S. Теперь оба желудочка возбуждены и сегмент ST находится на изопотенциальной линии вследствие отсутствия разности потенциалов в возбудимой системе желудочков.

Зубец Т отражает процессы реполяризации, т. е. восстанов­ление нормального мембранного потенциала клеток миокарда. Эти процессы в различных клетках возникают не строго синхронно. Вследствие этого появляется разность потенциалов между еще де­поляризованными участками миокарда (т. е. обладающими отрица­тельным зарядом) и участками миокарда, восстановившими свой положительный заряд. Указанная разность потенциалов регистри­руется в виде зубца Т. Этот зубец — самая изменчивая часть ЭКГ. Между зубцом Т и последующим зубцом Р регистрируется изопотенциальная линия, так как в это время в миокарде желудочков и в миокарде предсердий нет разности потенциалов. Видимого ото­бражения на ЭКГ зубца, соответствующего реполяризации предсер­дий, нет в связи с тем, что он по времени совпадает с мощным комплексом QRS и поглощается им. При поперечной блокаде сердца, когда не каждый зубец Р сопровождается комплексом QRS, наблю­дается предсердный зубец Та (T-атриум), отображающий реполяри­зацию предсердий.

Общая продолжительность электрической систолы желудочков (Q—T) почти совпадает с длительностью механической систолы (механическая систола начинается несколько позже, чем электри­ческая).

Электрокардиограмма позволяет оценить характер нарушений проведения возбуждения в сердце. Так, по величине интервала РQ (от начала зубца Р и до начала зубца Q) можно судить о том, совершается ли проведение возбуждения от предсердия к желудочку с нормальной скоростью. В норме это время равно 0,12—0,2 с. Общая продолжительность комплекса QRS отражает скорость охвата возбуждением сократительного миокарда желудочков и составляет 0,06—0,1 с (см. рис. 7.7).

Процессы деполяризации и реполяризации возникают в разных участках  миокарда  неодновременно,  поэтому величина  разности потенциалов между различными участками сердечной мышцы на протяжении сердечного цикла изменяется. Условную линию, сое­диняющую в каждый момент две точки, обладающие наибольшей разностью потенциалов, принято называть электрической осью серд­ца. В каждый данный момент электрическая ось сердца характери­зуется определенной величиной и направлением, т. е. обладает свой­ствами векторной величины. Вследствие неодновременности охвата возбуждением различных отделов миокарда этот вектор изменяет свое направление. Оказалась полезной регистрация нетолько ве­личины разности потенциалов сердечной мышцы (т. е. амплитуды зубцов на ЭКГ), но и изменений направления электрической оси желудочков сердца. Одновременная запись изменений величины разности потенциалов и направления электрической оси получило название векторэлектрокардиограммы (ВЭКГ).

Изменение ритма сердечной деятельности. Электрокардиография позволяет детально анализировать изменения сердечного ритма. В норме частота сердечных сокращений составляет 60—80 в минуту, при более редком ритме — брадикардии — 40—50, а при более частом — тахикардии — превышает 90—100 и доходит до 150 и более в минуту. Брадикардия часто регистрируется у спортсменов в состоянии покоя, а тахикардия — при интенсивной мышечной работе и эмоциональном возбуждении.

У молодых людей наблюдается регулярное изменение ритма сердечной деятельности в связи с дыханием — дыхательная арит­мия. Она состоит в том, что в конце каждого выдоха частота сердечных сокращений урежается.

Экстрасистолы. При некоторых патологических состояниях сер­дца правильный ритм эпизодически или регулярно нарушается вне­очередным сокращением — экстрасистолой. Если внеочередное возбуждение возникает в синусно-предсердном узле в тот момент, когда рефрактерный период закончился, но очередной автоматиче­ский импульс еще не появился, наступает раннее сокращение серд­ца — синусовая экстрасистола. Пауза, следующая за такой экс­трасистолой, длится такое же время, как и обычная.

Внеочередное возбуждение, возникшее в миокарде желудочков, не отражается на автоматии синусно-предсердного узла. Этот узел своевременно посылает очередной импульс, который достигает же­лудочков в тот момент, когда они еще находятся в рефрактерном состоянии после экстрасистолы, поэтому миокард желудочков не отвечает на очередной импульс, поступающий из предсердия. Затем рефрактерный период желудочков кончается и они опять могут ответить на раздражение, но проходит некоторое время, пока из синусно-предсердного узла придет второй импульс. Таким образом, экстрасистола, вызванная возбуждением, возникшим в одном из желудочков (желудочковая экстрасистола), приводит к продолжи­тельной так называемой компенсаторной паузе желудочков при неизменном ритме работы предсердий.

У человека экстрасистолы могут появиться при наличии очагов раздражения в самом миокарде, в области предсердного или желудочковых водителей ритма. Экстрасистолии могут способствовать влияния, поступающие в сердце из ЦНС.

Трепетание и мерцание сердца. В патологии можно наблюдать своеобразное состояние мышцы предсердий или желудочков сердца, называемое трепетанием и мерцанием (фибрилляция). При этом происходят чрезвычайно частые и асинхронные сокращения мы­шечных волокон предсердий или желудочков — до 400 (при трепетании) и до 600 (при мерцании) в минуту. Главным отли­чительным признаком фибрилляции служит неодновременность со­кращений отдельных мышечных волокон данного отдела сердца. При таком сокращении мышцы предсердий или желудочков не могут осуществлять нагнетание крови. У человека фибрилляция желудочков, как правило, смертельна, если немедленно не принять меры для ее прекращения. Наиболее эффективным способом пре­кращения фибрилляции желудочков является воздействие сильным (напряжением в несколько киловольт) ударом электрического тока, по-видимому, вызывающим одновременно возбуждение мышечных волокон желудочка, после чего восстанавливается синхронность их сокращений.

ЭКГ и ВЭКГ отражают изменения величины и направления потенциалов действия миокарда, но не позволяют оценить особен­ности нагнетательной функции сердца. Потенциалы действия мем­браны клеток миокарда представляют собой лишь пусковой механизм сокращения клеток миокарда, включающий определенную последо­вательность внутриклеточных процессов, заканчивающихся укоро­чением миофибрилл. Эта серия последовательных процессов пол­учила название сопряжения возбуждения и сокращения.

7.1.2. Нагнетательная функция сердца

Сердце нагнетает кровь в сосудистую систему благодаря перио­дическому синхронному сокращению мышечных клеток, составля­ющих миокард предсердий и желудочков. Сокращение миокарда вызывает повышение давления крови и изгнание ее из камер сердца. Вследствие наличия общих слоев миокарда у обоих предсердии и у обоих желудочков и одновременного прихода возбуждения к клеткам миокарда по сердечным проводящим миоцитам (волокнам Пуркинье) сокращение обоих предсердий, а затем и обоих желудочков осуще­ствляется одновременно.

Сокращение предсердий начинается в области устьев полых вен, вследствие чего устья сжимаются, поэтому кровь может двигаться только в одном направлении — в желудочки через предсердно-желудочковые отверстия. В этих отверстиях расположены клапаны. В момент диастолы предсердий створки клапанов расходятся, кла­паны раскрываются и пропускают кровь из предсердий в желудочки. В левом желудочке находится левый предсердно-желудочковый (дву­створчатый, или митральный) клапан, в правом — правый пред­сердно-желудочковый (трехстворчатый). При сокращении желудоч­ков кровь устремляется в сторону предсердий и захлопывает створки клапанов. Открыванию створок в сторону предсердий препятствуют сухожильные нити, при помощи которых края створок прикрепля­ются к сосочковым мышцам. Последние представляют собой выросты внутреннего мышечного слоя стенки желудочков. Являясь частью миокарда желудочков, сосочковые мышцы сокращаются вместе с ними, натягивая сухожильные нити, которые, подобно вантам па­русов, удерживают створки клапанов.

Повышение давления в желудочках при их сокращении приводит к изгнанию крови: из правого желудочка в легочную артерию, а из левого желудочка — в аорту. В устьях аорты и легочной артерии имеются полулунные клапаны — клапан аорты и клапан легочного ствола соответственно. Каждый из них состоит из трех лепестков, прикрепленных наподобие клапанных карманов к внутренней по­верхности указанных артериальных сосудов. При систоле желудоч­ков выбрасываемая ими кровь прижимает эти лепестки к внутренним стенкам сосудов. Во время диастолы кровь устремляется из аорты и легочной артерии обратно в желудочки и при этом захлопывает лепестки клапанов. Эти клапаны могут выдерживать большое дав­ление, они не пропускают кровь из аорты и легочной артерии в желудочки.

Во время диастолы предсердий и желудочков давление в камерах сердца падает, вследствие чего кровь начинает притекать из вен в предсердия и далее через предсердно-желудочковые (атриовентрикулярные) отверстия — в желудочки, в которых давление снижается до нуля и ниже.

Наполнение сердца кровью. Поступление крови в сердце обу­словлено рядом причин. Первой из них является остаток движущей силы, вызванной предыдущим сокращением сердца. О наличии этой остаточной силы свидетельствует то, что из периферического конца нижней полой вены, перерезанной вблизи сердца, течет кровь, что было бы невозможно в случае, если бы сила предыдущего сердечного сокращения была полностью израсходована.

Среднее давление крови в венах большого круга кровообращения равно 7 мм рт.ст. В полостях сердца во время диастолы оно близко к нулю. Градиент давления, обеспечивающий приток венозной крови к сердцу, около 7 мм рт. ст. Это величина очень небольшая, и поэтому любые препятствия току венозной крови (например, легкое случайное сдавливание полых вен во время хирургической операции) могут полностью прекратить доступ крови к сердцу. Сердце выбра­сывает в артерии лишь ту кровь, которая притекает к нему из вен, поэтому прекращение венозного притока немедленно приводит к прекращению выброса крови в артериальную систему, падению артериального давления.

Вторая причина притока крови к сердцу — сокращение скелетных мышц и наблюдающееся при этом сдавливание вен конечностей и туловища. В венах имеются клапаны, пропускающие кровь только в одном направлении — к сердцу. Периодическое сдавливание вен вызывает систематическую подкачку крови к сердцу. Эта так на­зываемая венозная помпа обеспечивает значительное увеличение притока венозной крови к сердцу, а значит, и сердечного выброса при физической работе.

Третья причина поступления крови в сердце — присасывание ее грудной клеткой, особенно во время вдоха. Грудная клетка пред­ставляет собой герметически закрытую полость, в которой вследствие эластической тяги легких существует отрицательное давление. В мо­мент вдоха сокращение наружных межреберных мышц и диафрагмы увеличивает эту полость: органы грудной полости, в частности полые вены, подвергаются растяжению и давление в полых венах и пред­сердиях становится отрицательным. Именно поэтому к ним сильнее притекает кровь с периферии.

Имеются данные о существовании механизма, непосредственно присасывающего кровь в сердце. Этот механизм состоит в том, что во время систолы желудочков, когда укорачивается их про­дольный размер, предсердно-желудочковая перегородка оттягива­ется книзу, что вызывает расширение предсердий и приток в них крови из полых вен. Предполагают наличие и других механизмов, активно доставляющих кровь в сердце. Наконец, определенное значение имеет присасывающая сила расслабляющихся желудоч­ков, которые, подобно отпущенной резиновой груше, восстанав­ливая свою форму во время диастолы, создают разрежение в полостях.

Во время диастолы в желудочки притекает около 70% общего объема крови. При систоле предсердий в желудочки подкачивается еще около 30% этого объема. Таким образом, значение нагнета­тельной функции миокарда предсердий для кровообращения срав­нительно невелико. Предсердия являются резервуаром для прите­кающей крови, легко изменяющим свою вместимость благодаря небольшой толщине стенок. Объем этого резервуара может возра­стать за счет наличия дополнительных емкостей — ушек предсердий, напоминающих кисеты, способные при расправлении вместить зна­чительные объемы крови.

7.1.2.1. Фазы сердечного цикла

Сокращение сердца сопровождается изменениями давления в его полостях и артериальных сосудах, возникновением тонов сердца, появлением пульсовых волн и т. д. При одновременной графической регистрации этих явлений можно определить длительность фаз сер­дечного цикла.

Под сердечным циклом понимают период, охватывающий одно сокращение — систола, и одно расслабление — диастола предсердий и желудочков. Пример синхронной регистрации ряда процессов при деятельности сердца представлен на рис. 7.8. Кривые записаны при частоте сердечных сокращений 75 в минуту. В этом случае общая длительность сердечного цикла равна 0,8 с. Сокра­щение сердца начинается с систолы предсердий, длящейся 0,1 с. Давление в предсердиях при этом поднимается до 5—8 мм рт.ст. Систола предсердии сменяется систолой желудочков продолжительностью 0,33 с. Систола желудочков разделяется на несколько пе­риодов и фаз.

Период   напряжения длится 0,08 с. и состоит из двух фаз.

Фаза асинхронного сокращения миокарда желудочков длится 0,05 с. Точкой отсчета начала этой фазы служит зубец Q ЭКГ, свидетельствующий о начале возбуждения желудочков. В течение этой фазы процесс возбуждения и следующий за ним процесс со­кращения распространяются по миокарду желудочков. Давление в желудочках еще близко к нулю. К концу фазы сокращение охва­тывает все волокна миокарда, а давление в желудочках начинает быстро нарастать.

Фаза изометрического сокращения (0,03 с.) начинается с захло­пывания створок предсердно-желудочковых (атриовентрикулярных) клапанов. При этом возникает I, или систолический, тон сердца. Смещение створок и крови в сторону предсердий вызывает подъем давления в предсердиях. На кривой регистрации давления в пред­сердиях виден небольшой зубец. Давление в желудочках быстро нарастает: до 70—80 мм рт.ст. в левом и до 15—20 мм рт.ст. в правом.

Рис. 7.8. Схематизированные кривые из­менений давления в правых (А) и левых (Б) отделах сердца, тонов сердца (В), объема желудочков (Г) и электрокарди­ограммы (Д).

I—IV — тоны ФКГ; 1 — фаза сокращений предсердий; 2 — фаза асинхронного сокра­щения желудочков; 3 — фаза изометрического сокращения желудочное; 4 — фаза изгнания; 5 — протодиастолический период; 6 — фаза изометрического    расслабленна    желудочков; 7    — фаза быстрого наполнения желудочков; 8 — фаза медленного наполнения желудочков.

Створчатые и полулунные клапаны («вход» и «выход» из желу­дочков) еще закрыты, объем крови в желудочках остается посто­янным. Вследствие того, что жидкость практически несжимаема, длина волокон' миокарда не изменяется, увеличивается только их напряжение. Стремительно растет давление крови в желудочках. Левый желудочек быстро приобраетает круглую форму и с силой ударяется о внутреннюю поверхность грудной стенки. В пятом межреберье на 1 см слева от среднеключичной линии в этот момент определяется верхушечный толчок.

К концу периода напряжения быстро нарастающее давление в левом и правом желудочках становится выше давления в аорте и легочной артерии. Кровь из желудочков устремляется в эти сосуды.

Период изгнания крови из желудочков длится 0,25 с и состоит из фазы быстрого (0,12 с) и фазы медленного изгнания (0,13 с). Давление в желудочках при этом нарастает: в левом до 120—130 мм рт.ст., а в правом до 25 мм рт.ст. В конце фазы медленного изгнания миокард желудочков начинает расслабляться, наступает его диастола (0,47 с). Давление в желудочках падает, кровь из аорты и легочной артерии устремляется обратно в полости желудочков и захлопывает полулунные клапаны, при этом возникает II, или диастолический, тон сердца.

Время от начала расслабления желудочков до захлопывания полулунных клапанов называется протодиастолическим пе­риодом (0,04 с). После захлопывания полулунных клапанов дав­ление в желудочках падает. Створчатые клапаны в это время еще закрыты, объем крови, оставшейся в желудочках, а следовательно, и длина волокон миокарда не изменяются, поэтому данный период назван периодом изометрического расслабления (0,08 с). К концу его давление в желудочках становится ниже, чем в пред­сердиях, открываются предсердно-желудочковые клапаны и кровь из предсердий поступает в желудочки. Начинается период на­полнения желудочков кровью, который длится 0,25 с. и делится на фазы быстрого (0,08 с) и медленного (0,17 с) напол­нения.

Колебания стенок желудочков вследствие быстрого притока крови к ним вызывают появление III тона сердца. К концу фазы медленного наполнения возникает систола предсердий. Предсердия нагнетают в желудочки дополнительное количество крови (пресистолический период, равный 0,1 с), после чего начинается новый цикл деятельности желудочков.

Колебание стенок сердца, вызванное сокращением предсердий и дополнительным поступлением крови в желудочки, ведет к появ­лению IV тона сердца.

При обычном прослушивании сердца хорошо слышны громкие I и II тоны, а тихие III и IV тоны выявляются лишь при графической регистрации тонов сердца.

Последовательность отдельных фаз цикла деятельности желу­дочков может быть представлена следующим образом:

Для фазового анализа цикла сердечной деятельности у человека катетеризацию сердца обычно не проводят, а используют ряд неинвазивных методов. В частности, получил распространение метод поликардиографии, основанный на синхронной регистрации ЭКГ, фонокардиограммы (ФКГ) и сфигмограммы (СП сонной артерии (рис. 7.9). На синхронной записи этих кривых по интервалу RR ЭКГ определяют продолжительность цикла (1), по интервалу от начала зубца Q на ЭКГ до начала II тона на ФКГ определяют продолжительность систолы (2), по интервалу от начала анакроты до инцизуры на СГ определяют продолжительность периода изгнания (3), по разности между продолжительностью систолы и периода изгнания — период напряжения (4), по интервалу между началом зубца Q ЭКГ и началом I тона ФКГ — период асинхронного сокращения (5), по разнице между продолжительностью периода напряжения и фазы асинхронного сокращения — фазу изометри­ческого сокращения (6).

Рис. 7.9. Критерии разделения цикла сердца на фазы. Объяснение в тексте.

7.1.2.2. Сердечный выброс

Основной физиологической функцией сердца является нагнетание крови в сосудистую систему.

Количество крови, выбрасываемой желудочком сердца в минуту, является одним из важнейших показателей функционального со­стояния сердца и называется минутным объемом крови (МОК). Он одинаков для правого и левого желудочков. Когда человек находится в состоянии покоя, МОК составляет в среднем 4,5—5,0 л. Разделив минутный объем на число сокращений сердца в минуту, можно вычислить систолический объем крови. При ритме сердеч­ных сокращений 70—75 в минуту систолический объем равен 65—70 мл крови. Следует заметить, что в покое в систолу из желудочков изгоняется примерно половина находящейся в них крови. Это создает резервный объем, который может быть моби­лизован при необходимости быстрого и значительного увеличения сердечного выброса.

Принято так же рассчитывать величину сердечного индекса, представляющего собой отношение МОК в л/мин к поверхности тела в м2. Средняя величина этого показателя для "стандартного" мужчины равна 3 л/мин*м2. Минутный и систолический объемы крови и сердечный индекс объединяются общим понятием — сер­дечный выброс.

Наиболее точный способ определения минутного объема крово­тока у человека предложен Фиком (1870). Он состоит в косвенном вычислении МОК, которое производят, зная разницу между содер­жанием кислорода в артериальной и венозной крови, объем кисло­рода, потребляемого человеком в минуту. Допустим, что в 1 мин через легкие в кровь поступило 400 мл кислорода и количество кислорода в артериальной крови на 8 об.% больше, чем в венозной. Это означает, что каждые 100 мл крови поглощают в легких 8 мл кислорода; следовательно, чтобы усвоить все количество кислорода, который поступил через легкие в кровь за минуту (в нашем примере 400 мл), необходимо, чтобы через легкие прошло 100*400/8=5000 мл крови. Это количество крови и составляет МОК, который в данном случае равен 5000 мл.

При использовании метода Фика необходимо брать смешанную венозную кровь из правой половины сердца. Венозную кровь у человека берут из правой половины сердца при помощи катетера, вводимого в правое предсердие через плечевую вену. Метод Фика, являясь наиболее точным, не получил широкого распространения в практике из-за технической сложности и трудоемкости (необходи­мость катетеризации сердца, пунктирование артерии, определение газообмена).

Для определения МОК разработан ряд других методов. Многие из них основаны на принципе разведения индикаторов, который состоит в том, что находят разведение и скорость циркуляции какого-либо вещества, введенного в вену. В настоящее время широко применяют некоторые краски и радиоактивные вещества. Введенное в вену вещество проходит через правые отделы сердца, малый круг кровообращения, левые отделы сердца и поступает в артерии боль­шого круга кровообращения, где и определяют его концентрацию. Сначала она волнообразно нарастает, затем падает. Через некоторое время, когда порция крови, содержавшая максимальное количество вещества, вторично пройдет через левые отделы сердца, его кон­центрация в артериальной крови вновь немного увеличивается (так называемая волна рециркуляции). Замечают время от момента вве­дения вещества до начала рециркуляции и вычерчивают кривую разведения, т. е. изменения концентрации (нарастания и убыли) исследуемого вещества в крови. Зная количество вещества, введен­ного в кровь и содержащегося в артериальной крови, а также время, потребовавшееся на прохождение всего количества введенного ве­щества через систему кровообращения, можно вычислить минутный объем кровотока в л/мин по формуле:

МОК=60*J/C*T,

где J — количество введенного вещества, мг; С — средняя концен­трация вещества, вычисленная по кривой разведения, мг/л; Т — длительность первой волны циркуляции, с.

Используют также метод интегральной реографии. Реография (импендансография) — метод регистрации электрического сопро­тивления тканей человеческого тела электрическому току, пропу­скаемому через тело. Чтобы не вызвать повреждения тканей, используют токи сверхвысокой частоты и очень небольшой силы. Сопротивление крови значительно меньше, чем сопротивление тка­ней, поэтому увеличение кровенаполнения тканей значительно снижает их электрическое сопротивление. Если регистрировать суммарное электрическое сопротивление грудной клетки в несколь­ких направлениях, то периодические резкие уменьшения его воз­никают в момент выброса сердцем в аорту и легочную артерию систолического объема крови. При этом величина уменьшения сопротивления пропорциональна величине систолического выброса. Помня об этом и используя формулы, учитывающие размеры тела, особенности конституции и т. д., можно по реографическим кривым определить величину систолического объема крови, а умножив ее на число сердечных сокращений, — получить величину МОК. В кардиохирургической практике для определения МОК используют методы оценки объемной скорости кровотока в аорте, так как через аорту протекает весь МОК, за исключением коро­нарного кровотока. Методы определения объемной скорости потока в сосудах (ультразвуковая и электромагнитная флоуметрия) опи­саны ниже.

Сердечно-легочный препарат. Влияние различных условий на величину систолического объема крови можно исследовать в остром опыте на сердечно-легочном препарате (рис. 7.10).

Рис. 7.10. Сердечно-легочный препарат (по В.М.Покровскому). 1 — краниальная вена с венозной канюлей; 2 — аорта с аортальной канюлей; 3 — термометры; 4 — дозирующее устройство; 5 — венозный резервуар крови; б — водяная баня; 7 — волюметр; 8 — имитатор артериального сопротивления; 9 — демпфер; 10 — ультратермостат; 11 — ртутный манометр для измерения среднего давления; 12 — регистратор минутного объема; 13 — регистратор «артериального» давления; 14 — регистратор «венозного» давления; 15 — отметчик раздражения; 16 — отметчик времени; 17 — электроманометр.

У животного большой круг кровообращения заменяют искусст­венным. Венечное кровообращение, а также малый круг кровооб­ращения (через легкие) сохраняют неповрежденными. В аорту и полую вену вводят канюли, которые соединяют с системой пласти­ковых сосудов и трубок. Кровь, выбрасываемая левым желудочком в аорту, течет по этой искусственной системе, поступает в полые вены, затем в правое предсердие и правый желудочек. Отсюда она направляется в легочный круг. Пройдя легкие, которые вентилируют аппаратом искусственного дыхания, кровь, обогащенная О2 и от­давшая СО2, так же как и в нормальных условиях, возвращается в левое сердце, откуда она вновь течет в искусственный большой круг кровообращения.

В остром опыте имеется возможность увеличивать или уменьшать приток крови к правому предсердию, меняя сопротивление, встре­чаемое кровью в искусственном большом круге кровообращения. Таким образом, сердечно-легочный препарат позволяет по желанию изменять нагрузку на сердце.

Опыты с сердечно-легочным препаратом позволили Старлингу установить «закон сердца» (закон Франка — Старлинга): при уве­личении кровенаполнения сердца в диастолу и, следовательно, при увеличении растяжения мышцы сердца сила сердечных сокращений возрастает. В условиях целостного организма действие закона Фран­ка — Старлинга ограничено влиянием других механизмов регуляции деятельности сердца.

Изменение минутного объема крови при работе. Систоличе­ский и минутный объемы кровотока — величины непостоянные. Их значения изменяются в зависимости от того, в каких условиях находится организм, и какую работу он совершает. При мышечной работе отмечается значительное увеличение МОК до 25—30 л, что может быть обусловлено учащением сердечных сокращений и увеличением систолического объема за счет использования резер­вного объема. У нетренированных лиц МОК увеличивается обычно за счет учащения ритма сердечных сокращений. У тренированных при работе средней тяжести происходит увеличение систолического объема и гораздо меньшее, чем у нетренированных, учащение ритма сердечных сокращений. В случае очень тяжелой работы, например при требующих огромного мышечного напряжения спор­тивных соревнованиях, даже у хорошо тренированных спортсменов наряду с увеличением систолического объема отмечается учащение сердечных сокращений, а следовательно, и увеличение кровоснаб­жения работающих мышц, в результате чего создаются условия, обеспечивающие большую работоспособность. Число сердечных со­кращений у тренированных может достигать при большой нагрузке 200—220 в минуту.

7.1.2.3. Механические и звуковые проявления сердечной деятельности

Сердечные сокращения сопровождаются рядом механических и звуковых проявлений, регистрируя которые, можно получить пред­ставление о динамике сокращения сердца. В пятом межреберье слева, на 1 см кнутри от среднеключичной линии, в момент сокра­щения сердца ощущается верхушечный толчок.

В период диастолы сердце напоминает эллипсоид, ось которого направлена сверху вниз и справа налево. При сокращении желу­дочков форма сердца приближается к шару, при этом продольный диаметр сердца уменьшается, а поперечный возрастает. Уплотнен­ный миокард левого желудочка касается внутренней поверхности грудной стенки. Одновременно опущенная к диафрагме при диастоле верхушка сердца в момент систолы приподнимается и ударяется о переднюю стенку грудной клетки. Все это вызывает появление верхушечного толчка.

Для анализа механической активности сердца используют ряд специальных методов.

Кинетокардиография — метод регистрации низкочастот­ных вибраций грудной клетки, обусловленных механической дея­тельностью сердца. С этой целью применяют датчики, обеспечива­ющие преобразование механических колебаний в электрические. Кинетокардиография позволяет изучить фазовую структуру цикла левого и правого желудочков сердца одновременно.

Электрокимография является электрической регистра­цией движения контура сердечной тени на экране рентгеновского аппарата. К экрану у краев контура сердца в области предсер­дия, желудочка или аорты прикладывают фотоэлемент, соединен­ный с осциллографом. При движениях сердца изменяется осве­щенность фотоэлемента, что регистрируется осциллографом в виде кривой. Так получают кривые сокращения и расслабления отделов сердца.

Баллистокардиография основана на том, что изгна­ние крови из желудочков и ее движение в крупных сосудах вызывают колебания всего тела, зависящие от явлений реактивной отдачи, подобных тем, которые наблюдаются при выстреле из пушки (название методики «баллистокардиография» происходит от слова «баллиста» — метательный снаряд). Кривые смещений тела, записываемые баллистокардиографом и зависящие от работы сер­дца, имеют в норме характерный вид. Для их регистрации су­ществует несколько различных способов и приборов.

Динамокардиография разработана Е. Б. Бабским и сотр. Эта методика регистрации механических проявлений сердечной деятельности человека основана на том, что движения сердца в грудной клетке и перемещение крови из сердца в сосуды сопро­вождаются смещением центра тяжести грудной клетки по отно­шению к той поверхности, на которой лежит человек. Обследуемый лежит на специальном столе, на котором смонтировано особое устройство с датчиками — преобразователями механических ве­личин в электрические колебания. Устройство.находится под груд­ной клеткой исследуемого. Смещения центра тяжести регистри­руются осциллографом в виде кривых. На динамокардиограмме отмечаются все фазы сердечного цикла: систола предсердий, пе­риоды напряжения желудочков и изгнания из них крови, протодиастолический период, периоды расслабления и наполнения же­лудочков кровью.

Эхокардиография — метод исследования механической де­ятельности и структуры сердца, основанный на регистрации отра­женных сигналов импульсного ультразвука. При этом ультразвук в форме высокочастотных посылок (до 2,25—3 мГц) проникает в тело человека, отражается на границе раздела сред с различным ультразвуковым сопротивлением и воспринимается прибором. Изо­бражение эхосигналов от структур сердца воспроизводится на экране осциллографа и регистрируется на фотопленке. Эхокардиограмма (ЭхоКГ) имеет вид ряда кривых, каждая точка которых отражает положение структур сердца в данный момент времени. ЭхоКГ всегда регистрируется синхронно с ЭКГ, что позволяет производить оценку механической активности сердца в определенные фазы сердечного цикла.

При работе сердца возникают звуки, которые называют тонами сердца. При выслушивании (аускультации) тонов сердца на поверх­ности левой половины грудной клетки слышны два тона: I тон (систолический), II тон — в начале диастолы (диастолический). Тон I более протяжный и низкий, II — короткий и высокий.

Детальный анализ тонов сердца стал возможным благодаря при­менению электронной аппаратуры. Если к груди обследуемого при­ложить чувствительный микрофон, соединенный с усилителем и осциллографом, можно зарегистрировать тоны сердца в виде кри­вых — фонокардиограммы (ФКГ). Эта методика называется фонокардиографией  (см. рис. 7.9).

Сужение клапанных отверстий или неплотное смыкание створок и лепестков клапанов вызывает появление сердечных шумов, воз­никающих вследствие вихреобразного (турбулентного) движения крови через отверстия клапанов. Эти шумы имеют важное диагно­стическое значение при поражениях клапанов сердца.

На ФКГ, помимо I и II тонов, регистрируются III и IV тоны сердца (более тихие, чем I и II, поэтому неслышные при обычной аускультации).

Тон III возникает вследствие вибрации стенки желудочков при быстром притоке крови в желудочки в начале их напол­нения.

Тон IV имеет два компонента. Первый из них возникает при сокращении миокарда предсердий, а второй появляется в самом начале расслабления предсердий и падения давления в них.

К внешним проявлениям деятельности сердца относят артери­альный пульс, характер которого отражает не только деятельность сердца, но и функциональные состояния артериальной системы. Артериальный пульс отражает ритм сердца, скорость изгнания крови левым желудочком и величину систолического объема, т. е. факторы, определяющие кинетическую энергию выброшенной сер­дцем крови. Это в какой-то мере позволяет судить о силе сер­дечных сокращений.

7.1.3. Регуляция деятельности сердца

Сердце человека, непрерывно работая, даже при спокойном об­разе жизни нагнетает в артериальную систему около Ют крови в сутки, 4000 т в год и около 300 000 т за всю жизнь. При этом сердце всегда точно реагирует на потребности организма, поддер­живая постоянно необходимый уровень кровотока.

Приспособление деятельности сердца к изменяющимся потреб­ностям организма происходит при помощи ряда регуляторных ме­ханизмов. Часть из них расположена в самом сердце — это внутрисердечные регуляторные механизмы. К ним относятся внутри­клеточные механизмы регуляции, регуляция межклеточных взаимодействий и нервные механизмы — внутрисердечные рефлексы. Вторая группа представляет собой внесердечные регуляторные механизмы. В эту группу входят экстракардиальные нервные и гуморальные механизмы регуляции сердечной деятельности.

7.1.3.1. Внутрисердечные регуляторные механизмы

Внутриклеточные механизмы регуляции. Электронная микро­скопия позволила установить, что миокард не является синцитием, а состоит из отдельных клеток — миоцитов, соединяющихся между собой вставочными дисками. В каждой клетке действуют механизмы регуляции синтеза белков, обеспечивающих сохранение ее структуры и функций. Скорость синтеза каждого из белков регулируется соб­ственным ауторегуляторным механизмом, поддерживающим уровень воспроизводства данного белка в соответствии с интенсивностью его расходования.

При увеличении нагрузки на сердце (например, при регулярной мышечной деятельности) синтез сократительных белков миокарда и структур, обеспечивающих их деятельность, усиливается. Появ­ляется так называемая рабочая (физиологическая) гипертрофия мио­карда, наблюдающаяся у спортсменов.

Внутриклеточные механизмы регуляции обеспечивают и изме­нение интенсивности деятельности миокарда в соответствии с ко­личеством притекающей к сердцу крови. Этот механизм получил название «закон сердца» (закон ФранкаСтарлинга): сила сокра­щения сердца (миокарда) пропорциональна степени его кровена­полнения в диастолу (степени растяжения), т. е. исходной длине его мышечных волокон. Более сильное растяжение миокарда в мо­мент диастолы соответствует усиленному притоку крови к сердцу. При этом внутри каждой миофибриллы актиновые нити в большей степени выдвигаются из промежутков между миозиновыми иитями, а значит, растет количество резервных мостиков, т. е. тех актиновых точек, которые соединяют актиновые и миозиновые нити в момент сокращения. Следовательно, чем больше растянута каждая клетка миокарда во время диастолы, тем больше она сможет укоротиться во время систолы. По этой причине сердце перекачивает в артери­альную систему то количество крови, которое притекает к нему из вен. Такой тип миогенной регуляции сократимости миокарда полу­чил название гетерометрической (т. е. зависимой от переменной величины — исходной длины волокон миокарда) регуляции. Под гомеометрической регуляцией принято понимать изменения силы сокращений при неменяющейся исходной длине волокон миокарда. Это прежде всего ритмозависимые изменения силы сокращений. Если стимулировать полоску миокарда при равном растяжении с все увеличивающейся частотой, то можно наблюдать увеличение силы каждого последующего сокращения («лестница» Боудича). В ка­честве теста на гомеометрическую регуляцию используют также пробу Анрепа — резкое увеличение сопротивления выбросу крови из левого желудочка в аорту. Это приводит к увеличению в опре­деленных границах силы сокращений миокарда. При проведении пробы выделяют две фазы. Вначале при увеличении сопротивления выбросу крови растет конечный диастолический объем и увеличение силы сокращений реализуется по гетерометрическому механизму. На втором этапе конечный диастолический объем стабилизируется и возрастание силы сокращений определяется гомеометрическим механизмом.

Регуляция межклеточных взаимодействий. Установлено, что вставочные диски, соединяющие клетки миокарда, имеют различную структуру. Одни участки вставочных дисков выполняют чисто меха­ническую функцию, другие обеспечивают транспорт через мембрану кардиомиоцита необходимых ему веществ, третьи — нексусы, или тес­ные контакты, проводят возбуждение с клетки на клетку. Нарушение межклеточных взаимодействий приводит к асинхронному возбужде­нию клеток миокарда и появлению сердечных аритмий.

К межклеточным взаимодействиям следует отнести и взаимоот­ношения кардиомиоцитов с соединительнотканными клетками мио­карда. Последние представляют собой не просто механическую опор­ную структуру. Они поставляют для сократительных клеток мио­карда ряд сложных высокомолекулярных продуктов, необходимых для поддержания структуры и функции сократительных клеток. Подобный тип межклеточных взаимодействий получил название креаторных связей (Г. И. Косицкий).

Внутрисердечные периферические рефлексы. Более высокий уро­вень внутриорганной регуляции деятельности сердца представлен внутрисердечными нервными механизмами. Обнаружено, что в серд­це возникают так называемые периферические рефлексы, дуга кото­рых замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. После гомотрансплантации сердца теплокровных животных и дегене­рации всех нервных элементов экстракардиального происхождения в сердце сохраняется и функционирует внутриорганная нервная систе­ма, организованная по рефлекторному принципу. Эта система вклю­чает афферентные нейроны, дендриты которых образуют рецепторы растяжения на волокнах миокарда и венечных (коронарных) сосудах, вставочные и эфферентные нейроны. Аксоны последних иннервируют миокард и гладкие мышцы коронарных сосудов. Указанные нейроны соединяются между собой синаптическими связями, образуя внутри-сердечные рефлекторные дуги.

В экспериментах показано, что увеличение растяжения миокарда правого предсердия (в естественных условиях оно возникает при увеличении притока крови к сердцу) приводит к усилению сокра­щений миокарда левого желудочка. Таким образом, усиливаются сокращения не только того отдела сердца, миокард которого непос­редственно растягивается притекающей кровью, но и других отделов, чтобы «освободить место» притекающей крови и ускорить выброс ее в артериальную систему. Доказано, что эти реакции осуществ­ляются с помощью внутрисердечных периферических рефлексов (Г. И. Косицкий).

Подобные реакции наблюдаются лишь на фоне низкого исход­ного кровенаполнения сердца и незначительной величины давления крови в устье аорты и коронарных сосудах. Если камеры сердца переполнены кровью и давление в устье аорты и коронарных сосудах высокое, то растяжение венозных приемников в сердце угнетает сократительную активность миокарда, в аорту выбрасы­вается меньшее количество крови, а приток крови из вен затруд­няется. Подобные реакции играют важную роль в регуляции кро­вообращения, обеспечивая стабильность кровенаполнения артери­альной системы.

Гетерометрический и гомеометрический механизмы регуляции силы сокращения миокарда могут привести лишь к резкому уве­личению энергии сердечного сокращения в случае внезапного по­вышения притока крови из вен или повышения артериального давления. Казалось бы, что при этом артериальная система не защищена от губительных для нее внезапных мощных ударов крови. В действительности же таких ударов не возникает благодаря защитной роли, осуществляемой рефлексами внутрисердечной нер­вной системы.

Переполнение камер сердца притекающей кровью (равно как и значительное повышение давления крови в устье аорты, коро­нарных сосудов) вызывает снижение силы сокращений миокарда посредством внутрисердечных периферических рефлексов. Сердце при этом выбрасывает в артерии в момент систолы меньшее, чем в норме, количество содержащейся в желудочках крови. Задержка даже небольшого дополнительного объема крови в камерах сердца повышает диастолическое давление в его полостях, что вызывает снижение притока венозной крови к сердцу. Излишний объем крови, который при внезапном выбросе его в артерии мог бы вызвать пагубные последствия, задерживается в венозной системе.

Опасность для организма представляло бы и уменьшение сер­дечного выброса, что могло бы вызвать критическое падение арте­риального давления. Такую опасность также предупреждают регу-ляторные реакции внутрисердечной системы.

Недостаточное наполнение кровью камер сердца и коронарного русла вызывает усиление сокращений миокарда посредством внут­рисердечных рефлексов. При этом желудочки в момент систолы выбрасывают в аорту большее, чем в норме, количество содер­жащейся в них крови. Это и предотвращает опасность недоста­точного наполнения кровью артериальной системы. К моменту расслабления желудочки содержат меньшее, чем в норме, коли­чество крови, что способствует усилению притока венозной крови к сердцу.

В естественных условиях внутрисердечная нервная система не является автономной. Она — лишь низшее звено сложной иерархии нервных механизмов, регулирующих деятельность сердца. Следу­ющим, более высоким звеном этой иерархии являются сигналы, поступающие по блуждающим и симпатическим нервам, осуще­ствляющие процессы экстракардиальной нервной регуляции сердца.

7.1.3.2. Внесердечные регуляторные механизмы

Нервная экстракардиальная регуляция. Эта регуляция осуще­ствляется импульсами, поступающими к сердцу из ЦНС по блуж­дающим и симпатическим нервам.

Подобно всем вегетативным нервам, сердечные нервы образованы двумя нейронами. Тела первых нейронов, отростки которых состав­ляют блуждающие нервы (парасимпатический отдел автономной нервной системы), расположены в продолговатом мозге (рис. 7.11). Отростки этих нейронов заканчиваются в интрамуральных ганглиях сердца. Здесь находятся вторые нейроны, отростки которых идут к проводящей системе, миокарду и коронарным сосудам.

Рис. 7.11. Экстракардиальные нервы сердца.

С — сердце; М — продолговатый мозг; С.I. — ядро, вызывающее торможение деятель­ности сердца; С.А. — ядро, вызывающее учащение сердечной деятельности; L.H. — боковой рог спинного мозга; Т.S. — симпа­тический ствол; V — эфферентные волокна блуждающего нерва; D — нерв «депрессор» (афферентные волокна блуждающего нерва); S — симпатические волокна; А — спинно­мозговые афферентные волокна; С. S. — каротидный синус; В — афферентные волокна от правого  предсердия  и  полой  вены.

Первые нейроны симпатической части автономной нервной систе­мы, передающие импульсы к сердцу, расположены в боковых рогах пяти верхних сегментов грудного отдела спинного мозга. Отростки этих нейронов заканчиваются в шейных и верхних грудных симпати­ческих узлах. В этих узлах находятся вторые нейроны, отростки ко­торых идут к сердцу. Большая часть симпатических нервных волокон, иннервирующих сердце, отходит от звездчатого узла.

Влияние на сердце блуждающих нервов впервые изучили братья Вебер (1845). Они установили, что раздражение этих нервов тормозит работу сердца вплоть до полной его остановки в диастолу. Это был первый случай обнаружения в организме тормозящего влияния нервов.

При электрическом раздражении периферического отрезка пере­резанного блуждающего нерва происходит урежение сердечных со­кращений. Это явление называется отрицательным хронотропным эффектом. Одновременно отмечается уменьшение амплитуды со­кращений — отрицательный инотропный эффект.

При сильном раздражении блуждающих нервов работа сердца на некоторое время  прекращается.  В этот период возбудимость мышцы сердца понижена. Понижение возбудимости мышцы сердца называется отрицательным батмотропным эффектом. Замедле­ние проведения возбуждения в сердце называется отрицательным дромотропным эффектом. Нередко наблюдается полная блокада проведения возбуждения в предсердно-желудочковом узле.

Микроэлектродные отведения потенциалов от одиночных мышеч­ных волокон предсердий показали увеличение мембранного потен­циала — гиперполяризацию при сильном раздражении блуждающего нерва (рис. 7.12).

Рис. 7.12. Потенциалы действия клетки — водителя ритма сердца лягушки при раздражении блуждающего (А) и симпатического (Б) нервов.

На  рисунке  А  показана только  нижняя  половина  потенциала действия.

При продолжительном раздражении блуждающего нерва прекра­тившиеся вначале сокращения сердца восстанавливаются, несмотря на продолжающееся раздражение. Это явление называют ускольза­нием сердца из-под влияния блуждающего нерва.

Влияние на сердце симпатических нервов впервые было изучено братьями Цион (1867), а затем И. П. Павловым. Ционы описали учащение сердечной деятельности при раздражении сим­патических нервов сердца (положительный хронотропный эф­фект); соответствующие волокна они назвали nn. accelerantes cordis (ускорители сердца).

При раздражении симпатических нервов ускоряется спонтанная деполяризация клеток — водителей ритма в диастолу, что ведет к учащению сердечных сокращений.

Раздражение сердечных ветвей симпатического нерва улучшает проведение возбуждения в сердце (положительный дромотропный эффект) и повышает возбудимость сердца (положительный батмотропный эффект). Влияние раздражения симпатического нерва наблюдается после большого латентного периода (10 с и более) и продолжается еще долго после прекращения раздражения нерва.

И. П. Павлов (1887) обнаружил нервные волокна (усиливающий нерв), усиливающие сердечные сокращения без заметного учащения ритма (положительный инотропный эффект).

Инотропный эффект «усиливающего» нерва хорошо виден при регистрации внутрижелудочкового давления электроманометром. Выраженное влияние «усиливающего» нерва на сократимость мио­карда проявляется особенно при нарушениях сократимости. Одной из таких крайних форм нарушения сократимости является альтернация сердечных сокращений, когда одно «нормальное» сокращение миокарда (в желудочке развивается давление, превышающее дав­ление в аорте и осуществляется выброс крови из желудочка в аорту) чередуется со «слабым» сокращением миокарда, при котором дав­ление в желудочке в систолу не достигает давления в аорте и выброса крови не происходит. «Усиливающий» нерв не только уси­ливает обычные сокращения желудочков, но и устраняет альтерна­цию, восстанавливая неэффективные сокращения до обычных (рис. 7.13). По мнению И. П. Павлова, эти волокна являются специально тро­фическими, т. е. стимулирующими процессы обмена веществ.

Совокупность приведенных данных позволяет представить вли­яние нервной системы на ритм сердца как корригирующее, т. е. ритм сердца зарождается в его водителе ритма, а нервные влияния ускоряют или замедляют скорость спонтанной деполяризации клеток водителя ритма, ускоряя или замедляя таким образом частоту сер­дцебиений.

В последние годы стали известны факты, свидетельствующие о возможности не только корригирующих, но и пусковых влияний нервной системы на ритм сердца, когда сигналы, приходящие по нервам, инициируют сокращения сердца. Это можно наблюдать в опытах с раздражением блуждающего нерва в режиме, близком к естественной импульсации в нем, т. е. «залпами» («пачками») им­пульсов, а не непрерывным потоком, как это делалось традиционно. При раздражении блуждающего нерва «залпами» импульсов сердце сокращается в ритме этих «залпов» (каждому «залпу» соответствует одно сокращение сердца). Меняя частоту и характеристику «залпов», можно управлять ритмом сердца в широких пределах.

Рис. 7.13. Влияние «усиливающего» нерва на сердце (по В. М Покровскому).

А — влияние «усиливающего нерва» на динамику сокращений сердца; Б — устранение «усиливающим» нервом альтернации силы сокращений сердца; а — до раздражения, б — во время раздражения нерва. 1 — ЭКГ; 2 — давление в аорте; 3 — давление в левом желудочке до раздражения  и   во  время  раздражения  нерва.

Воспроизведение сердцем центрального ритма резко изменяет электрофизиологические параметры деятельности синоатриального узла. При работе узла в режиме автоматии, а также при изменениях частоты под влиянием раздражения блуждающего нерва в тради­ционном режиме возбуждение возникает в одной точке узла, в случае воспроизведения центрального ритма в инициации возбуж­дения принимает участие одновременно множество клеток узла. На изохронной карте движения возбуждения в узле этот процесс от­ражается не в виде точки, а в виде большой площади, образованной одновременно возбуждающимися структурными элементами. Сигна­лы, обеспечивающие синхронное воспроизведение сердцем централь­ного ритма, отличаются по своей медиаторной природе от общетор­мозных влияний блуждающего нерва. По-видимому, выделяющиеся в этом случае наряду с ацетилхолином регуляторные пептиды отли­чаются по своему составу, т. е. реализация каждого типа эффектов блуждающего нерва обеспечивается своей смесью медиаторов («медиаторные коктейли»).

С целью изменения частоты посылки «пачек» импульсов из сердечного центра продолговатого мозга у людей можно воспользо­ваться такой моделью. Человеку предлагают дышать чаще, чем сокращается его сердце. Для этого он следит за миганием лампочки фотостимулятора  и на каждую вспышку света  производит одно дыхание. Фотостимулятор устанавливается с частотой, превышаю­щей исходную частоту сердцебиений. За счет иррадиации возбуж­дения с дыхательных на сердечные нейроны в продолговатом мозге в сердечных эфферентных нейронах блуждающего нерва формиру­ются «пачки» импульсов в новом, общем для дыхательных и сер­дечных центров, ритме. При этом синхронизация ритмов дыхания и сердцебиения достигается за счет «залпов» импульсов, приходящих к сердцу по блуждающим нервам. В опытах на собаках феномен синхронизации дыхательных и сердечных ритмов наблюдается при резком учащении дыхания во время перегревания. Как только ритм учащающегося дыхания станет равным частоте сердцебиений, оба ритма синхронизируются и учащаются или урежаются в определенном диапазоне синхронно. Если при этом нарушить проведение сигналов по блуждающим нервам посредством их перерезки или холодовой блокады, то синхронизация ритмов исчезнет. Следова­тельно, и в этой модели сердце сокращается под влиянием «залпов» импульсов, приходящих к нему по блуждающим нервам.

Совокупность изложенных экспериментальных фактов позволи­ла сформировать представление о существовании наряду с внут-рисердечным и центрального генератора ритма сердца (В. М. По­кровский). При этом последний в естественных условиях форми­рует адаптивные (приспособительные) реакции сердца, воспроиз­водя ритм сигналов, приходящих к сердцу по блуждающим нервам. Внутрисердечный генератор обеспечивает поддержание жизни за счет сохранения насосной функции сердца в случае выключения центрального генератора при наркозе, ряде заболеваний, обмороке и т. д.

Рис. 7.14. Влияние раздражения Блуждающего нерва на сердце лягушки. Л   —   запись   сокращения   изолированного   сердца,    под   кривой    —   отметка   раздражения блуждающего  нерва;   Б   —   запись   сокращений   второго   изолированного   сердца.   Стрелкой отмечен   момент   переноса   жидкости,   питавшей   первое   сердце   во   время   раздражения,   во второе  сердце.

Химический механизм передачи нервных импульсов в сердце. При раздражении периферических отрезков блуждающих нервов в их окончаниях в сердце выделяется АХ, а при раздражении сим­патических нервов — норадреналин. Эти вещества являются непос­редственными агентами, вызывающими торможение или усиление деятельности сердца, и поэтому получили название медиаторов (пе­редатчиков) нервных влияний. Существование медиаторов было по­казано Леви (1921). Он раздражал блуждающий или симпатический нерв изолированного сердца лягушки, а затем переносил жидкость из этого сердца в другое, тоже изолированное, но не подвергавшееся нервному влиянию — второе сердце давало такую же реакцию (рис. 7.14, 7.15). Следовательно, при раздражении нервов первого сердца в питающую его жидкость переходит соответствующий ме­диатор. На нижних кривых можно видеть эффекты, вызываемые перенесенным раствором Рингера, находившимся в сердце во время раздражения.

Рис. 7.15. Влияние раздражения симпатического нерва на сердце лягушки (по В. Б. Болдыреву).

А — резкое усиление  и учащение сердечных сокращений  при раздражении симпатического

нерва   (отметка раздражения на  нижней линии);  Б  — действие физиологического раствора,

взятого  из  первого  сердца  во  время  стимуляции  симпатического  нерва,  на  второе  сердце,

не  подвергавшееся  раздражению.

АХ, образующийся в окончаниях блуждающего нерва, быст­ро разрушается ферментом холинэстеразой, присутствующим в крови и клетках, поэтому АХ оказывает только местное дейст­вие. Норадреналин разрушается значительно медленнее, чем АХ, и потому действует дольше. Этим объясняется то, что после прекращения раздражения симпатического нерва в течение неко­торого времени сохраняются учащение и усиление сердечных со­кращений.

Получены данные, свидетельствующие о том, что при возбуж­дении наряду с основным медиаторным веществом в синаптическую щель поступают и другие биологически активные вещества, в час­тности пептиды. Последние обладают модулирующим действием, изменяя величину и направленность реакции сердца на основной медиатор. Так, опиоидные пептиды угнетают эффекты раздражения блуждающего нерва, а пептид дельта-сна усиливает вагусную брадикардию.

7.1.3.3. Взаимодействие внутрисердечных и внесердечных нервных регуляторных механизмов

Центры блуждающих и симпатических нервов являются второй ступенью иерархии нервных центров, регулирующих работу сердца. Интегрируя рефлекторные и нисходящие из высших отделов голо­вного мозга влияния, они формируют сигналы, управляющие дея­тельностью сердца, в том числе определяющие ритм его сокращений. Более высокая ступень этой иерархии — центры гипоталамической области. При электрическом раздражении различных зон гипотала­муса наблюдаются реакции сердечно-сосудистой системы, по силе и выраженности намного превосходящие реакции, возникающие в естественных условиях. При локальном точечном раздражении не­которых пунктов гипоталамуса удавалось наблюдать изолированные реакции: изменение ритма сердца, или силы сокращений левого желудочка, или степени расслабления левого желудочка и т. д. Таким образом, удалось выявить, что в гипоталамусе имеются струк­туры, способные регулировать отдельные функции сердца. В есте­ственных условиях эти структуры не работают изолированно. Ги­поталамус представляет собой интегративный центр, который может изменять любые параметры сердечной деятельности и состояние любых отделов сердечно-сосудистой системы с тем, чтобы обеспечить потребности организма при поведенческих реакциях, возникающих в ответ на изменение условий окружающей (и внутренней) среды.

Гипоталамус является лишь одним из уровней иерархии центров, регулирующих деятельность сердца. Он — исполнительный орган, обеспечивающий интегративную перестройку функций сердечно-со­судистой системы (и других систем) организма по сигналам, посту­пающим из расположенных выше отделов мозга — лимбической системы или новой коры. Раздражение определенных структур лим­бической системы или новой коры наряду с двигательными реак­циями изменяет функции сердечно-сосудистой системы: артериаль­ное давление, частоту сердечных сокращений и т. д.

Анатомическая близость в коре большого мозга центров, ответ­ственных за возникновение двигательных и сердечно-сосудистых реакций, способствует оптимальному вегетативному обеспечению поведенческих реакций организма.

7.1.3.4. Рефлекторная регуляция деятельности сердца

Осуществляется при участии всех перечисленных отделов ЦНС. Рефлекторные реакции могут как тормозить (замедлять и ослаблять), так и возбуждать (ускорять и усиливать) сердечные сокращения.

Рефлекторные изменения работы сердца возникают при раздра­жении различных рецепторов. Особое значение в регуляции работы сердца имеют рецепторы, расположенные в некоторых участках сосудистой системы. Эти рецепторы возбуждаются при изменении давления крови в сосудах или при воздействии гуморальных (хи­мических) раздражителей. Участки, где сосредоточены такие рецеп­торы, получили название сосудистых рефлексогенных зон. Наиболее значительна роль рефлексогенных зон, расположенных в дуге аорты и в области разветвления сонной артерии. Здесь находятся окончания центростремительных нервов, раздражение которых рефлекторно вызывает урежение сердечных сокращений. Эти нервные окончания представляют собой барорецепторы. Естественным их раздражите­лем служит растяжение сосудистой стенки при повышении давления в тех сосудах, где они расположены. Поток афферентных нервных импульсов от этих рецепторов повышает тонус ядер блуждающих нервов, что приводит к замедлению сердечных сокращений. Чем выше давление крови в сосудистой рефлексогенной зоне, тем чаще возникают афферентные импульсы.

Рефлекторные изменения сердечной деятельности можно вызвать раздражением рецепторов и других кровеносных сосудов. Например, при повышении давления в легочной артерии замедляется работа сердца. Можно изменить сердечную деятельность и путем раздра­жения рецепторов сосудов многих внутренних органов.

Обнаружены также рецепторы в самом сердце: эндокарде, мио­карде и эпикарде; их раздражение рефлекторно изменяет и работу сердца, и тонус сосудов.

В правом предсердии и в устьях полых вен имеются механорецепторы, реагирующие на растяжение (при повышении давления в по­лости предсердия или в полых венах). Залпы афферентных импульсов от этих рецепторов проходят по центростремительным волокнам блуждающих нервов к группе нейронов ретикулярной формации ство­ла мозга, получивших название «сердечно-сосудистый центр». Аф­ферентная стимуляция этих нейронов приводит к активации нейронов симпатического отдела автономной нервной системы и вызывает рефлек­торное учащение сердечных сокращений. Импульсы, идущие в ЦНС от механорецепторов предсердий, влияют и на работу других органов.

Классический пример вагального рефлекса описал в 60-х годах прошлого века Гольц: легкое поколачивание по желудку и кишеч­нику лягушки вызывает остановку или замедление сокращений сердца (рис. 7.16). Остановка сердца при ударе по передней брюшной стенке наблюдалась также у человека. Центростремительные пути этого рефлекса идут от желудка и кишечника по чревному нерву в спинной мозг и достигают ядер блуждающих нервов в продолго­ватом мозге. Отсюда начинаются центробежные пути, образованные ветвями блуждающих нервов, идущими к сердцу. К числу вагальных рефлексов относится также глазосердечный рефлекс Ашнера (урежение сердцебиений на 10—20 в минуту при надавливании на глазные яблоки).

Рефлекторное учащение и усиление сердечной деятельности на­блюдаются при болевых раздражениях и эмоциональных состояниях: ярости, гневе, радости, а также при мышечной работе. Изменения сердечной деятельности при этом вызываются импульсами, посту­пающими к сердцу по симпатическим нервам, а также ослаблением тонуса ядер блуждающих нервов.

Рис. 7.16. Рефлекс Гольца у лягушки. Запись   сокращений   сердца   лягушки.   X   — начало легкого поколачивания по кишечнику. Отметка  времени   1  с.

7.1.3.5. Условнорефлекторная регуляция деятельности сердца

Тот факт, что различные эмоции вызывают изменение сердечной деятельности, указывает на важное значение коры большого мозга в регуляции деятельности сердца. Доказательством этого является то, что изменение ритма и силы сердечных сокращений можно наблюдать у человека при одном упоминании или воспоминании о факторах, вызывающих у него определенные эмоции.

Наиболее убедительные данные о наличии корковой регуляции деятельности сердца получены экспериментально с помощью метода условных рефлексов. Если какой-нибудь, например звуковой, раз­дражитель сочетать многократно с надавливанием на глазные яб­локи, вызывающим уменьшение частоты сердечных сокращений, то затем один этот раздражитель вызывает урежение сердечной дея­тельности — условный глазосердечный рефлекс.

Условнорефлекторные реакции лежат в основе тех явлений, ко­торые характеризуют так называемое предстартовое состояние спорт­сменов. Перед соревнованием у них наблюдаются изменения дыха­ния, обмена веществ, сердечной деятельности такого же характера, как и во время самого соревнования. У конькобежцев на старте сердечный ритм увеличивается на 22—35 сокращений в минуту.

Кора большого мозга обеспечивает приспособительные реакции организма не только к текущим, но и к будущим событиям. По механизму условных рефлексов сигналы, предвещающие наступле­ние этих событий или значительную вероятность их возникновения, могут вызвать перестройку функций сердца и всей сердечно-сосу­дистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма.

При чрезвычайно сложных ситуациях (действие «чрезвычайных раздражителей», по И. П. Павлову) возможны нарушения и срывы этих корковых высших регуляторных механизмов (неврозы по И. П. Павлову). При этом наряду с расстройствами поведенческих реакций (и невротическими изменениями психологического статуса человека) могут появиться значительные нарушения деятельности сердца и сердечно-сосудистой системы. В некоторых случаях эти нарушения могут закрепиться по типу патологических условных рефлексов. При этом нарушения сердечной деятельности могут воз­никнуть при действии одних лишь условных сигналов.

7.1.3.6. Гуморальная регуляция деятельности сердца

Изменения работы сердца наблюдаются при действии на него ряда биологически активных веществ, циркулирующих в крови.

Катехоламины (адреналин, норадреналин) увеличивают си­лу и учащают ритм сердечных сокращений, что имеет важное биологическое значение. При физических нагрузках или эмоцио­нальном напряжении мозговой слой надпочечников выбрасывает в кровь большое количество адреналина, что приводит к усилению сердечной деятельности, крайне необходимому в данных условиях.

Указанный эффект возникает в результате стимуляции катехоламинами рецепторов миокарда, вызывающей активацию внутри­клеточного фермента аденилатциклазы, которая ускоряет образова­ние 3',5'-циклического аденозинмонофосфата (цАМФ). Он акти­вирует фосфорилазу, вызывающую расщепление внутримышечного гликогена и образование глюкозы (источника энергии для сокра­щающегося миокарда). Кроме того, фосфорилаза необходима для активации ионов Са2+ — агента, реализующего сопряжение воз­буждения и сокращения в миокарде (это также усиливает положи­тельное инотропное действие катехоламинов). Помимо этого, кате­холамины повышают проницаемость клеточных мембран для ионов Са2+, способствуя, с одной стороны, усилению поступления их из межклеточного пространства в клетку, а с другой — мобилизации ионов Са2+ из внутриклеточных депо.

Активация аденилатциклазы отмечается в миокарде и при дей­ствии глюкагона — гормона, выделяемого α-клетками панкреа­тических островков, что также вызывает положительный инотропный эффект.

Гормоны коры надпочечников, ангиотензин и серотонин также увеличивают силу сокращений миокарда, а ти­роксин учащает сердечный ритм. Гипоксемия, гиперкапния и ацидоз угнетают сократительную активность миокарда.

7.1.4. Эндокринная функция сердца

Миоциты предсердий образуют атриопептид, или натрийуретический гормон. Стимулируют секрецию этого гормона растяжение предсердий притекающим объемом крови, изменение уровня натрия в крови, содержание в крови вазопрессина, а также влияния экстракардиальных нервов. Натрийуретический гормон обладает ши­роким спектром физиологической активности. Он сильно повышает экскрецию почками ионов Na+ и Сl-, подавляя их реабсорбцию в канальцах нефронов. Влияние на диурез осуществляется также за счет увеличения клубочковой фильтрации и подавления реабсорбции воды в канальцах. Натрийуретический гормон подавляет секрецию ренина, ингибирует эффекты ангиотензина II и альдостерона. На­трийуретический гормон расслабляет гладкие мышечные клетки мел­ких сосудов, способствуя тем самым снижению артериального дав­ления, а также гладкую мускулатуру кишечника.

7.2. ФУНКЦИИ СОСУДИСТОЙ СИСТЕМЫ

7.2.1. Основные принципы гемодинамики. Классификация сосудов

Гемодинамика — раздел науки, изучающий механизмы дви­жения крови в сердечно-сосудистой системе. Он является частью гидродинамики раздела физики, изучающего движение жидкостей.

Согласно законам гидродинамики, количество жидкости (Q), про­текающее через любую трубу, прямо пропорционально разности давлений в начале (Р1) и в конце (P2) трубы и обратно пропорци­онально сопротивлению (P2) току жидкости:

Q=(P1-P2)/R

Если применить это уравнение к сосудистой системе, то следует иметь в виду, что давление в конце данной системы, т. е. в месте впадения полых вен в сердце, близко к нулю. В этом случае уравнение можно записать так:

Q=P/R

где Q — количество крови, изгнанное сердцем в минуту; Р — величина среднего давления в аорте, R — величина сосудистого сопротивления.

Из этого уравнения следует, что Р = Q*R, т. е. давление (Р) в устье аорты прямо пропорционально объему крови, выбрасываемому сердцем в артерии в минуту (Q) и величине периферического со­противления (R). Давление в аорте (P) и минутный объем крови (Q) можно измерить непосредственно. Зная эти величины, вычис­ляют периферическое сопротивление — важнейший показатель со­стояния сосудистой системы.

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Любой из таких сосудов можно уподобить трубке, сопротивление которой (R) определяется по формуле Пуазейля:

R=8lη/πr4 ,

где l — длина трубки; η— вязкость протекающей в ней жидкости; π— отношение окружности к диаметру; r— радиус трубки.

Сосудистая система состоит из множества отдельных трубок, соединенных параллельно и последовательно. При последовательном соединении трубок их суммарное сопротивление равно сумме со­противлений каждой трубки:

R=R1+R2+R3+...+Rn

При параллельном соединении трубок их суммарное сопротив­ление вычисляют по формуле:

R=1/(1/R1+1/R2+1/R3+...+1/Rn)

Точно определить сопротивление сосудов по этим формулам невозможно, так как геометрия сосудов изменяется вследствие со­кращения сосудистых мышц. Вязкость крови также не является величиной постоянной. Например, если кровь протекает через сосуды диаметром меньше 1 мм, вязкость крови значительно уменьшается. Чем меньше диаметр сосуда, тем меньше вязкость протекающей в нем крови. Это связано с тем, что в крови наряду с плазмой имеются форменные элементы, которые располагаются в центре потока. При­стеночный слой представляет собой плазму, вязкость которой на­много меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть площади его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови. Теоретический расчет сопротивления капилляров невозмо­жен, так как в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.

Из приведенных уравнений видно, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого 5— 7 мкм. Однако вследствие того что огромное количество капилляров включено в сосудистую сеть, по которой осуществляется ток крови, параллельно, их суммарное сопротивление меньше, чем суммарное сопротивление артериол.

Основное сопротивление току крови возникает в артериолах. Систему артерий и артериол называют сосудами сопротивления, или резистивными сосудами.

Артериолы представляют собой тонкие сосуды (диаметром 15— 70 мкм). Стенка этих сосудов содержит толстый слой циркулярно расположенных гладких мышечных клеток, при сокращении кото­рого просвет сосуда может значительно уменьшаться. При этом резко повышается сопротивление артериол. Изменение сопротивле­ния артериол меняет уровень давления крови в артериях. В случае увеличения сопротивления артериол отток крови из артерий умень­шается и давление в них повышается. Падение тонуса артериол увеличивает отток крови из артерий, что приводит к уменьшению артериального давления. Наибольшим сопротивлением среди всех участков сосудистой системы обладают именно артериолы, поэтому изменение их просвета является главным регулятором уровня общего артериального давления. Артериолы — «краны сердечно-сосудистой системы» (И. М. Сеченов). Открытие этих «кранов» увеличивает отток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие резко ухудшает кровообращение данной сосудистой зоны.

Итак, артериолы играют двоякую роль: участвуют в поддержании необходимого организму уровня общего артериального давления и в регуляции величины местного кровотока через тот или иной орган или ткань. Величина органного кровотока соответствует потребности органа в кислороде и питательных веществах, определяемой уровнем рабочей активности органа.

В работающем органе тонус артериол уменьшается, что обеспечи­вает повышение притока крови. Чтобы общее артериальное давление при этом не снизилось в других (неработающих) органах, тонус артериол повышается. Суммарная величина общего периферического со­противления и общий уровень артериального давления остаются при­мерно постоянными, несмотря на непрерывное перераспределение крови между работающими и неработающими органами.

О сопротивлении в различных сосудах можно судить по разности давления крови в начале и в конце сосуда: чем выше сопротивление току крови, тем большая сила затрачивается на ее продвижение по сосуду и, следовательно, тем значительнее падение давления на протяжении данного сосуда. Как показывают прямые измерения давления крови в разных сосудах, давление на протяжении крупных и средних артерий падает всего на 10%, а в артериолах и капил­лярах — на 85%. Это означает, что 10% энергии, затрачиваемой желудочками на изгнание крови, расходуется на продвижение крови в крупных и средних артериях, а 85% — на продвижение крови в артериолах и капиллярах. Распределение давления в разных отделах сосудистого русла показано на рис. 7.17.

Рис. 7.17. Изменения давления в разных частях сосудистой системы. I — в аорте; 2 — в крупных артериях; 3 — в мелких артериях; 4 — в артериолах; 5 — в капиллярах; б — в венулах; 7 — в венах; 8 — в полой вене. Штриховкой обозначено колебание давления в систолу и диастолу, пунктиром   —  среднее давление.

Зная объемную скорость кровотока (количество крови, протека­ющее через поперечное сечение сосуда), измеряемую в миллилитрах в секунду, можно рассчитать линейную скорость кровотока, которая выражается в сантиметрах в секунду. Линейная скорость (V) отра­жает скорость продвижения частиц крови вдоль сосуда и равна объемной (Q), деленной на площадь сечения кровеносного сосуда:

V=Q/πr2

Линейная скорость, вычисленная по этой формуле, есть средняя скорость. В действительности линейная скорость различна для частиц крови, продвигающихся в центре потока (вдоль продольной оси сосуда) и у сосудистой стенки. В центре сосуда линейная скорость максимальна, около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Объем крови, протекающей в 1 мин через аорту или полые вены и через легочную артерию или легочные вены, одинаков. Отток крови от сердца соответствует ее притоку. Из этого следует, что объем крови, протекший в 1 мин через всю артериальную и всю венозную систему большого и малого круга кровообращения, оди­наков. При постоянном объеме крови, протекающей через любое общее сечение сосудистой системы, линейная скорость кровотока не может быть постоянной. Она зависит от общей ширины данного отдела сосудистого русла. Это следует из уравнения, выражающего соотношение линейной и объемной скорости: чем больше общая площадь сечения сосудов, тем меньше линейная скорость кровотока. В кровеносной системе самым узким местом является аорта. При разветвлении артерий, несмотря на то, что каждая ветвь сосуда уже той, от которой она произошла, наблюдается увеличение сум­марного русла, так как сумма просветов артериальных ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярной сети: сумма просветов всех капилляров примерно в 500—600 раз больше просвета аорты. Соответственно этому кровь в капиллярах движется в 500—600 раз медленнее, чем в аорте.

В венах линейная скорость кровотока снова возрастает, так как при слиянии вен друг с другом суммарный просвет кровяного русла суживается. В полых венах линейная скорость кровотока достигает половины скорости в аорте. Распределение скорости кровотока в кровеносной системе показано на рис. 7.18.

Рис. 7.18. Средняя линейная скорость то­ка крови в разных частях сосудистой си­стемы.

В связи с тем что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер, поэтому линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желу­дочков и уменьшаются во время диастолы. В капиллярах и венах кровоток постоянен, т. е. линейная скорость его постоянна. В пре­вращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки.

Непрерывный ток крови по всей сосудистой системе обусловли­вают выраженные упругие свойства аорты и крупных артерий.

В сердечно-сосудистой системе часть кинетической энергии, раз­виваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. Последние образуют эластическую, или компрессионную, камеру, в которую поступает значительный объем крови, растягивающий ее; при этом кинетиче­ская энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спасаться и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.

С позиций функциональной значимости для системы кровообра­щения сосуды подразделяются на следующие группы:

1. Упруго-растяжимые — аорта с крупными артериями в большом круге кровообращения, легочная артерия с ее ветвями — в малом круге, т. е. сосуды эластического типа.

2. Сосуды сопротивления (резистивные сосуды) — артериолы, в том числе и прекапиллярные сфинктеры, т. е. сосуды с хорошо выраженным мышечным слоем.

3. Обменные  (капилляры)   — сосуды, обеспечивающие обмен газами и другими веществами между кровью и тканевой жидкостью.

4. Шунтирующие (артериовенозные анастомозы) — сосуды, обес­печивающие «сброс» крови из артериальной в венозную систему сосудов, минуя капилляры.

5. Емкостные —  вены,  обладающие  высокой  растяжимостью. Благодаря этому в венах содержится 75—80% крови.

Процессы, протекающие в последовательно соединенных сосудах, обеспечивающие циркуляцию (кругооборот) крови, называют сис­темной гемодинамикой. Процессы, протекающие в параллельно подключенных к аорте и полым венам сосудистых руслах, обеспе­чивая кровоснабжение органов, называют регионарной, или орган­ной, гемодинамикой.

7.2.2. Движение крови по сосудам

7.2.2.1. Артериальное давление крови

Артериальное давление (АД) является одним из ведущих параметров гемодинамики. Оно наиболее часто измеряется и служит предметом коррекции в клинике. Факторами, определяющими ве­личину АД, являются объемная скорость кровотока и величина общего периферического сопротивления сосудов (ОПСС). Объемная скорость кровотока для сосудистой системы большого круга крово­обращения является минутным объемом крови (МОК), нагнетаемым сердцем в аорту. В этом случае ОПСС служит расчетной величиной, зависящей от тонуса сосудов мышечного типа (преимущественно артериол), определяющего их радиус, длины сосуда и вязкости протекающей крови. Методы определения МОК даны в разделе 7.1.2.2, а принципы расчета ОПСС — в разделе 7.2.4.

Способы измерения давления. Давление в артериях у животного, а иногда и у человека измеряют путем введения в артерию стеклянной канюли или катетера, соединенного с манометром трубкой с жесткими стенками. Такой способ определения давления называют прямыми (кровавым). Катетер и соединительную трубку за­полняют раствором противосвертывающего вещества, чтобы кровь в них не свертывалась.

Давление крови в артериях не является постоянным: оно непре­рывно колеблется в пределах некоторого среднего уровня. На кривой артериального давления эти колебания имеют различный вид.

Волны первого порядка (пульсовые) самые частые. Они синхро­низированы с сокращениями сердца. Во время каждой систолы пор­ция крови поступает в артерии и увеличивает их эластическое растяжение, при этом давление в артериях повышается. Во время диастолы поступление крови из желудочков в артериальную систему прекращается и происходит только отток крови из крупных артерий: растяжение их стенок уменьшается и давление снижается. Колебания давления, постепенно затухая, распространяются от аорты и легоч­ной артерии на все их разветвления. Наибольшая величина давления в артериях (систолическое, или максимальное, давление) наблю­дается во время прохождения вершины пульсовой волны, а наи­меньшая (диастолическое, или минимальное, давление) — во время прохождения основания пульсовой волны. Разность между систоли­ческим и диастолическим давлением, т. е. амплитуда колебаний давления, называется пульсовым давлением. Оно создает волну пер­вого порядка. Пульсовое давление при прочих равных условиях пропорционально количеству крови, выбрасываемой сердцем при каждой систоле.

В мелких артериях пульсовое давление снижается и, следова­тельно, разница между систолическим и диастолическим давлением уменьшается. В артериолах и капиллярах пульсовые волны арте­риального давления отсутствуют.

Кроме систолического, диастолического и пульсового артериаль­ного давления определяют так называемое среднее артериальное давление. Оно представляет собой ту среднюю величину давления, при которой в отсутствие пульсовых колебаний наблюдается такой же гемодинамический эффект, как и при естественном пульсирую­щим давлении крови, т. е. среднее артериальное давление — это равнодействующая всех изменений давления в сосудах.

Продолжительность понижения диастолического давления боль­ше, чем повышения систолического, поэтому среднее давление ближе к величине диастолического давления. Среднее давление в одной и той же артерии представляет собой более постоянную величину, а систолическое и диастолическое изменчивы.

Кроме пульсовых колебаний, на кривой АД наблюдаются волны второго порядка, совпадающие с дыхательными движениями: поэ­тому их называют дыхательными волнами: у человека вдох сопро­вождается понижением АД, а выдох — повышением.

В некоторых случаях на кривой АД отмечаются волны третьего порядка. Это еще более медленные повышения и понижения дав­ления, каждое из которых охватывает несколько дыхательных волн второго порядка. Указанные волны обусловлены периодическими изменениями тонуса сосудодвигательных центров. Они наблюдаются чаще всего при недостаточном снабжении мозга кислородом, напри­мер при подъеме на высоту, после кровопотери или отравлениях некоторыми ядами.

Кроме прямого, применяют косвенные, или бескровные, способы определения давления. Они основываются на измерении давления, которому нужно подвергнуть стенку данного сосуда извне, чтобы прекратить по нему ток крови. Для такого исследования применяют сфигмоманометр Рива-Роччи. Обследуемому наклады­вают на плечо полую резиновую манжету, которая соединена с резиновой грушей, служащей для нагнетания воздуха, и с мано­метром. При надувании манжета сдавливает плечо, а манометр показывает величину этого давления. Для измерения давления крови с помощью этого прибора, по предложению Н. С. Короткова, вы­слушивают сосудистые тоны, возникающие в артерии к периферии от наложенной на плечо манжеты.

При движении крови в несдавленной артерии звуки отсутствуют. Если давление в манжете поднять выше уровня систолического АД, то манжета полностью сдавливает просвет артерии и кровоток в ней прекращается. Звуки при этом также отсутствуют. Если теперь постепенно выпускать воздух из манжеты (т. е. проводить деком­прессию), то в момент, когда давление в ней станет чуть ниже уровня систолического АД, кровь при систоле преодолевает сдав­ленный участок и прорывается за манжету. Удар о стенку артерии порции крови, движущейся через сдавленный участок с большой скоростью и кинетической энергией, порождает звук, слышимый ниже манжеты. Давление в манжете, при котором появляются пер­вые звуки в артерии, возникает в момент прохождения вершины пульсовой волны и соответствует максимальному, т. е. систоличе­скому, давлению. При дальнейшем снижении давления в манжете наступает момент, когда оно становится ниже диастолического, кровь начинает проходить по артерии как во время вершины, так и основания пульсовой волны. В этот момент звуки в артерии ниже манжеты исчезают. Давление в манжете в момент исчезновения звуков в артерии соответствует величине минимального, т. е. ди­астолического, давления. Величины давления в артерии, определен­ные по способу Короткова и зарегистрированные у этого же человека путем введения в артерию катетера, соединенного с электромано­метром, существенно не отличаются друг от друга.

У взрослого человека среднего возраста систолическое давление в аорте при прямых измерениях равно 110—125 мм рт.ст. Значи­тельное снижение давления происходит в мелких артериях, в артериолах. Здесь давление резко уменьшается, становясь на артери­альном конце капилляра равным 20—30 мм рт.ст.

В клинической практике АД определяют обычно в плечевой артерии. У здоровых людей в возрасте 15—50 лет максимальное давление, измеренное способом Короткова, составляет 110—125 мм рт.ст. В возрасте старше 50 лет оно, как правило, повышается. У 60-летних максимальное давление равно в среднем 135—140 мм рт.ст. У новорожденных максимальное артериальное давление 50 мм рт.ст., но уже через несколько дней становится 70 мм рт.ст. и к концу 1-го месяца жизни — 80 мм рт.ст.

Минимальное артериальное давление у взрослых людей среднего возраста в плечевой артерии в среднем равно 60—80 мм рт.ст., пульсовое составляет 35—50 мм рт.ст., а среднее — 90—95 мм рт.ст.

7.2.2.2. Артериальный пульс

Артериальным пульсом называют ритмические колебания стенки артерии, обусловленные повышением давления в период сис­толы. Пульсацию артерий можно легко обнаружить прикосновением к любой доступной ощупыванию артерии: лучевой (a. radialis), височ­ной (a. temporalis), наружной артерии стопы (a. dorsalis pedis) и др.

Пульсовая волна, или колебательное изменения диаметра или объема артериальных сосудов, обусловлена волной повышения дав­ления, возникающей в аорте в момент изгнания крови из желудоч­ков. В это время давление в аорте резко повышается и стенка ее растягивается. Волна повышенного давления и вызванные этим рас­тяжением колебания сосудистой стенки с определенной скоростью распространяются от аорты до артериол и капилляров, где пульсовая волна гаснет.

Скорость распространения пульсовой волны не зависит от скорости движения крови. Максимальная линейная скорость течения крови по артериям не превышает 0,3—0,5 м/с, а скорость распространений пульсовой волны у людей молодого и среднего возраста при нормаль­ном артериальном давлении и нормальной эластичности сосудов равна в аорте 5,5—8,0 м/с, а в периферических артериях — 6,0—9,5 м/с. С возрастом по мере понижения эластичности сосудов скорость рас­пространения пульсовой волны, особенно в аорте, увеличивается.

Для детального анализа отдельного пульсового колебания произ­водят его графическую регистрацию при помощи специальных прибо­ров — сфигмографов. В настоящее время для исследования пульса ис­пользуют датчики, преобразующие механические колебания сосуди­стой стенки в электрические изменения, которые и регистрируют.

В пульсовой кривой (сфигмограмме) аорты и крупных ар­терий различают две основные части — подъем и спад. Подъем кривой — анакрота — возникает вследствие повышения АД и вызванного этим растяжения, которому подвергаются стенки артерий под влиянием крови, выброшенной из сердца в начале фазы изгна­ния. В конце систолы желудочка, когда давление в нем начинает падать, происходит спад пульсовой кривой — катакрота. В тот момент, когда желудочек начинает расслабляться и давление в его полости становится ниже, чем в аорте, кровь, выброшенная в ар­териальную систему, устремляется назад к желудочку; давление в артериях резко падает и на пульсовой кривой крупных артерий появляется глубокая выемка — инцизура. Движение крови обратно к сердцу встречает препятствие, так как полулунные клапаны под влиянием обратного тока крови закрываются и препятствуют по­ступлению ее в сердце. Волна крови отражается от клапанов и создает вторичную волну повышения давления, вызывающую вновь растяжение артериальных стенок. В результате на сфигмограмме появляется вторичный, или дикротический, подъем. Формы кривой пульса аорты и отходящих непосредственно от нее крупных сосудов, так называемого центрального пульса, и кривой пульса перифери­ческих артерий несколько отличаются (рис. 7.19).

Рис. 7.19. Сфигмограммы сонной (1), лу­чевой (2) и пальцевой (3) артерий, за­писанные синхронно.

Исследование пульса, как пальпаторное, так и инструментальное, посредством регистрации сфигмограммы дает ценную информацию о функционировании сердечно-сосудистой системы. Это исследование позволяет оценить как сам факт наличия биений сердца, так и частоту его сокращений, ритм (ритмичный или аритмичный пульс). Колебания ритма могут иметь и физиологический характер. Так, «дыхательная аритмия», проявляющаяся в увеличении частоты пуль­са на вдохе и уменьшении при выдохе, обычно выражена у молодых людей. Напряжение (твердый или мягкий пульс) определяют по величине усилия, которое необходимо приложить для того, чтобы пульс в дистальном участке артерии исчез. Напряжение пульса в определенной мере отображает величину среднего АД.

7.2.2.3. Объемная скорость кровотока

Как уже указывалось, различают линейную и объемную скорость тока крови, которая зависит от развития сосудистой сети в данном органе и от интенсивности его деятельности.

При работе органов в них происходит расширение сосудов и, следовательно, уменьшается сопротивление. Объемная скорость тока крови в сосудах работающего органа увеличивается.

Для измерения объемной и линейной скорости кровотока в со­судах предложено несколько методов. Один из современных мето­дов — ультразвуковой: к артерии на небольшом расстоянии друг от друга прикладывают две маленькие пьезоэлектрические пластин­ки, которые способны преобразовывать механические колебания в электрические и обратно. На первую пластинку подают электриче­ское напряжение высокой частоты. Оно преобразуется в ультразву­ковые колебания, которые передаются с кровью на вторую пластинку, воспринимаются ею и преобразуются в высокочастотные элек­трические колебания. Определив, как быстро распространяются уль­тразвуковые колебания по току крови от первой пластинки ко второй и в обратном направлении, т. е. против тока крови, можно рассчитать скорость кровотока. Чем быстрее ток крови, тем быстрее будут распространяться ультразвуковые колебания в одном направлении и медленнее — в противоположном.

Достаточно широкое распространение получил метод электро­магнитной флоурометрии. Он основан на принципе электромаг­нитной индукции. Сосуд располагают между полюсами подковооб­разного магнита. Кровь, являясь проводящей средой, двигаясь вдоль сосуда, пересекает магнитное поле и создает ЭДС, которая направ­лена перпендикулярно магнитному полю и движению крови. Вели­чина ЭДС пропорциональна напряженности поля и скорости дви­жения в нем крови. Воспринимает ЭДС датчик, выполненный в виде незамкнутого кольца, надеваемого на сосуд. Измеряя ЭДС, определяют скорость движения крови.

Объемную скорость кровотока у человека в конечности возможно определить посредством плетизмографии. Методика состоит в ре­гистрации изменений объема органа или части тела, зависящих от их кровенаполнения, т. е. от разности между притоком крови по артериям и оттоком ее по венам. При плетизмографии конечность или ее часть заключают в жесткий герметический сосуд, соединен­ный с манометром для измерения малых колебаний давления. В слу­чае изменения кровенаполнения конечности изменяется ее объем, что вызывает увеличение или уменьшение давления в сосуде, в который помещена конечность; давление регистрируется манометром и записывается в виде кривой — плетизмограммы. Для определения объемной скорости кровотока в конечности на несколько секунд сжимают вены и прерывают венозный отток. Поскольку приток крови по артериям продолжается, а венозного оттока нет, увеличение объема конечности соответствует количеству притекающей крови. Такая методика получила название окклюзионной (окклюзия — закупорка, зажатие) плетизмографии.

Величина кровотока в разных органах представлена в табл. 7.1.

Таблица 7.1. Величина кровотока в органах (на 100 г массы)

Орган

Кровоток, мл/мин

Щитовидная железа

560

Почки

420

Печень

150

Сердце (коронарные сосуды)

85

Кишечник

50

Мозг

65

Селезенка

70

Желудок

35

Мышцы рук и ног (в покое)

2—3

7.2.2.4. Движение крови в капиллярах. Микроциркуляция

Капилляры представляют собой тончайшие сосуды, диамет­ром 5—7 мкм, длиной 0,5—1,1 мм. Эти сосуды пролегают в меж­клеточных пространствах, тесно соприкасаясь с клетками органов и тканей организма. Суммарная длина всех капилляров тела чело­века составляет около 100 000 км, т. е. нить, которой можно было бы 3 раза опоясать земной шар по экватору. Физиологическое значение капилляров состоит в том, что через их стенки осущест­вляется обмен веществ между кровью и тканями. Стенки капилляров образованы только одним слоем клеток эндотелия, снаружи которого находится тонкая соединительнотканная базальная мембрана.

Скорость кровотока в капиллярах невелика и составляет 0,5— 1 мм/с. Таким образом, каждая частица крови находится в капил­ляре примерно 1 с. Небольшая толщина слоя крови (7—8 мкм) и тесный контакт его с клетками органов и тканей, а также непре­рывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и тканевой (межклеточной) жидкостью.

В тканях, отличающихся интенсивным обменом веществ, число капилляров на 1 мм2 поперечного сечения больше, чем в тканях, в которых обмен веществ менее интенсивный. Так, в сердце на 1 мм2 сечения в 2 раза больше капилляров, чем в скелетной мышце. В сером веществе мозга, где много клеточных элементов, капил­лярная сеть значительно более густая, чем в белом.

Различают два вида функционирующих капилляров. Одни из них образуют кратчайший путь между артериолами и венулами (магистральные капилляры). Другие представляют собой боковые ответвления от первых: они отходят от артериального конца маги­стральных капилляров и впадают в их венозный конец. Эти боковые ответвления образуют капиллярные сети. Объемная и линейная скорость кровотока в магистральных капиллярах больше, чем в боковых ответвлениях. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях и в других фе­номенах микроциркуляции.

Давление крови в капиллярах измеряют прямым способом: под контролем бинокулярного микроскопа в капилляр вводят тончайшую канюлю, соединенную с электроманометром. У человека давление на артериальном конце капилляра равно 32 мм рт.ст., а на венозном — 15 мм рт.ст., на вершине петли капилляра ногтевого ложа — 24 мм рт.ст. В капиллярах почечных клубочков давление достигает 65— 70 мм рт.ст., а в капиллярах, оплетающих почечные канальцы, — всего 14—18 мм рт.ст. Очень невелико давление в капиллярах лег­ких — в среднем 6 мм рт.ст. Измерение капиллярного давления про­изводят в положении тела, при котором капилляры исследуемой обла­сти находятся на одном уровне с сердцем. В случае расширения артериол давление в капиллярах повышается, а при сужении понижается.

Кровь течет лишь в «дежурных» капиллярах. Часть капилляров выключена из кровообращения. В период интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает.

Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ — гормонов и ме­таболитов — осуществляются при воздействии их на артерии и артериолы. Сужение или расширение артерий и артериол изменяет как количество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, так и состав крови, протекающей по капиллярам, т. е. соотношение эритроцитов и плазмы. При этом об­щий кровоток через метартериолы и капилляры определяется сокра­щением гладких мышечных клеток артериол, а степень сокращения прекапиллярных сфинктеров (гладких мышечных клеток, располо­женных у устья капилляра при его отхождении от метаартериол) оп­ределяет, какая часть крови пройдет через истинные капилляры.

В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и венул — артериовенозные анастомозы. Это наиболее короткий путь между артериолами и венулами. В обычных условиях анастомозы закрыты и кровь проходит через капиллярную сеть. Если анастомозы откры­ваются, то часть крови может поступать в вены, минуя капилляры.

Артериовенозные анастомозы играют роль шунтов, регулирую­щих капиллярное кровообращение. Примером этого является изме­нение капиллярного кровообращения в коже при повышении (свыше 35°С) или понижении (ниже 15°С) температуры окружающей среды. Анастомозы в коже открываются и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в про­цессах терморегуляции.

Структурной и функциональной единицей кровотока в мелких со­судах является сосудистый модуль — относительно обособленный в гемодинамическом отношении комплекс микрососудов, снабжающий кровью определенную клеточную популяцию органа. При этом имеет место специфичность васкуляризации тканей различных органов, что проявляется в особенностях ветвления микрососудов, плотности капилляризации тканей и др. Наличие модулей позволяет регулировать локальный кровоток в отдельных микроучастках тканей.

Микроциркуляция — собирательное понятие. Оно объеди­няет механизмы кровотока в мелких сосудах и теснейшим образом связанный с кровотоком обмен жидкостью и растворенными в ней газами и веществами между сосудами и тканевой жидкостью.

Специального рассмотрения заслуживают процессы обмена между кровью и тканевой жидкостью. Через сосудистую систему за сутки проходит 8000—9000 л крови. Через стенку капилляров профиль­тровывается около 20 л жидкости и 18 л реабсорбируется в кровь. По лимфатическим сосудам оттекает около 2 л жидкости. Законо­мерности, обусловливающие обмен жидкости между капиллярами и тканевыми пространствами, были описаны Стерлингом. Гидроста­тическое давление крови в капиллярах (Ргк) является основной силой, направленной на перемещение жидкости из капилляров в ткани. Основной силой, удерживающей жидкость в капиллярном русле, является онкотическое давление плазмы в капилляре (Рок). Определенную роль играют также гидростатическое давление (Ргт) и онкотическое давление тканевой жидкости (Рот) (рис. 7.20).

Рис. 7.20. Обмен водой между капилля­ром и межклеточным пространством (схе­ма). Объяснения в тексте.

На артериальном конце капилляра Ргк составляет 30—35 мм рт.ст., а на венозном — 15—20 мм рт.ст. Рок на всем протяжении остается относительно постоянным и составляет 25 мм рт.ст. Таким образом, на артериальном конце капилляра осуществляется процесс фильтрации — выхода жидкости, а на венозном — обратный про­цесс — реабсорбция жидкости. Определенные коррективы вносит в этот процесс Рот, равное примерно 4,5 мм рт.ст., которое удерживает жидкость в тканевых пространствах, а также отрицательная вели­чина Ргт (-3—9 мм рт.ст.).

Следовательно, объем жидкости, переходящей через стенку капил­ляра за одну минуту (V), при коэффициенте фильтрации К равен:

V=(Ргк + Рот + Ргт - Рок)*К.

На артериальном конце капилляра V положителен, здесь про­исходит фильтрация жидкости в ткань, а на венозном — V отри­цателен и жидкость реабсорбируется в кровь. Транспорт электро­литов и низкомолекулярных веществ, например глюкозы, осущест­вляется вместе с водой.

Капилляры различных органов отличаются по своей ультраструк­туре, а следовательно, по способности пропускать в тканевую жид­кость белки. Так, 1 л лимфы в печени содержит 60 г белка, в миокарде — 30 г, в мышцах — 20 г и в коже — 10 г. Белок, проникший в тканевую жидкость, с лимфой возвращается в кровь.

Механизмы транспорта газов в тканях описаны в главе 8.

7.2.2.5. Движение крови в венах

Движение крови в венах обеспечивает наполнение полостей сер­дца во время диастолы. Ввиду небольшой толщины мышечного слоя стенки вен гораздо более растяжимы, чем стенки артерий, поэтому в венах может скапливаться большое количество крови. Даже если давление в венозной системе повысится всего на несколько милли­метров, объем крови в венах увеличится в 2—3 раза, а при повы­шении давления в венах на 10 мм рт.ст. вместимость венозной системы возрастет в 6 раз. Вместимость вен может также изменяться при сокращении или расслаблении гладкой мускулатуры венозной стенки. Таким образом, вены (а также сосуды малого круга крово­обращения) являются резервуаром крови переменной емкости.

Венозное давление. Давление в венах у человека можно изме­рить, вводя в поверхностную (обычно локтевую) вену полую иглу и соединяя ее с чувствительным электроманометром. В венах, на­ходящихся вне грудной полости, давление равно 5—9 мм рт.ст.

Для определения венозного давления необходимо, чтобы данная вена располагалась на уровне сердца. Это важно потому, что к величине кровяного давления, например в венах ног в положении стоя, присоединяется гидростатическое давление столба крови, на­полняющего вены.

В венах грудной полости, а также в яремных венах давление близко к атмосферному и колеблется в зависимости от фазы дыхания. При вдохе, когда грудная клетка расширяется, давление понижается и становится отрицательным, т. е. ниже атмосферного. При выдохе происходят противоположные изменения и давление повышается (при обычном выдохе оно не поднимается выше 2—5 мм рт.ст.). Ранение вен, лежащих вблизи грудной полости (например, яремных вен), опасно, так как давление в них в момент вдоха является отрицательным. При вдохе возможно поступление атмосферного воздуха в полость вен и развитие воздушной эмболии, т. е. перенос пузырьков воздуха кровью и последующая закупорка ими артериол и капилляров, что может привести к смерти.

Скорость кровотока в венах. Кровяное русло в венозной части шире, чем в артериальной, что по законам гемодинамики должно привести к замедлению тока крови. Скорость тока крови в пери­ферических венах среднего калибра 6—14 см/с, в полых венах достигает 20 см/с.

Движение крови в венах происходит прежде всего вследствие разности давления крови в мелких и крупных венах (градиент давления), т. е. в начале и конце венозной системы. Эта разность, однако, невелика, и потому кровоток в венах определяется рядом добавочных факторов. Одним из них является то, что эндотелий вей (за исключением полых вен, вен воротной системы и мелких венул) образует клапаны, пропускающие кровь только по направ­лению к сердцу. Скелетные мышцы, сокращаясь, сдавливают вены, что вызывает передвижение крови; обратно кровь не идет вследствие наличия клапанов. Этот механизм перемещения крови в венах называют мышечным насосом.

Таким образом, силами, обеспечивающими перемещение крови по венам, являются градиент давления между мелкими и крупными венами, сокращение скелетных мышц («мышечный насос»), приса­сывающее действие грудной клетки.

Венный пульс. В мелких и средних венах пульсовые колебания давления крови отсутствуют. В крупных венах вблизи сердца от­мечаются пульсовые колебания — венный пульс, имеющий иное происхождение, чем артериальный пульс. Он обусловлен затрудне­нием притока крови из вен в сердце во время систолы предсердий и желудочков. Во время систолы этих отделов сердца давление внутри вен повышается и происходят колебания их стенок. Удобнее всего записывать венный пульс яремной вены.

На кривой венного пульса — флебограмме — различают три зубца: а, с, v (рис. 7.21). Зубец а совпадает с систолой правого предсердия и обусловлен тем, что в момент систолы предсердия устья полых вей зажимаются кольцом мышечных волокон, вслед­ствие чего приток крови из вен в предсердия временно приостанав­ливается. Во время диастолы предсердий доступ в них крови ста­новится вновь свободным, и в это время кривая венного пульса круто падает. Вскоре на кривой венного пульса появляется неболь­шой зубец c. Он обусловлен толчком пульсирующей сонной артерии, лежащей вблизи яремной вены. После зубца c начинается падение кривой, которое сменяется новым подъемом — зубцом v. Последний обусловлен тем, что к концу систолы желудочков предсердия на­полнены кровью, дальнейшее поступление в них крови невозможно, происходят застой крови в венах и растяжение их стенок. После зубца v наблюдается падение кривой, совпадающее с диастолой желудочков и поступлением в них крови из предсердий.

Рис. 7.21. Флебограмма. Объяснения в тексте.

7.2.2.6. Время кругооборота крови

Время полного кругооборота крови — это время, необходимое для того, чтобы она прошла через большой и малый круг кровообращения.

Для измерения времени полного кругооборота крови применяют ряд способов, принцип которых заключается в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны.

В последние годы скорость кругооборота (или только в малом, или только в большом круге) определяют при помощи радиоактив­ного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудов и в области сердца. После введения в локтевую вену ра­диоактивного изотопа натрия определяют время появления радио­активного излучения в области сердца и исследуемых сосудов.

Время полного кругооборота крови у человека составляет в сред­нем 27 систол сердца. При частоте сердечных сокращений 70—80 в минуту кругооборот крови происходит приблизительно за 20—23 с, однако скорость движения крови по оси сосуда больше, чем у его стенок. Поэтому не вся кровь совершает полный кругооборот так быстро и указанное время является минимальным.

Исследования на собаках показали, что 1/5 времени полного кругооборота крови приходится на прохождение крови по малому кругу кровообращения и 4/5 — по большому.

7.2.3. Регуляция движения крови по сосудам

Каждая клетка, ткань и орган нуждаются в кислороде и пита­тельных веществах в количестве, соответствующем их метаболизму, т. е. интенсивности их функции. В связи с этим тканям необходимо поступление строго определенного количества крови, несущей О2 и питательные вещества, в единицу времени. Эта потребность обес­печивается благодаря поддержанию постоянного уровня АД и од­новременно непрерывного перераспределения протекающей крови между всеми органами и тканями в соответствии с их потребностями в каждый данный момент.

Механизмы, регулирующие кровообращение, можно подразде­лить на две категории: 1) центральные, определяющие величину АД и системное кровообращение, и 2) местные, контролирующие величину кровотока через отдельные органы и ткани. Хотя такое разделение является удобным, оно в значительной мере условно, так как процессы местной регуляции осуществляются с участием центральных механизмов, а управление системным кровообращени­ем зависит от деятельности местных регуляторных механизмов.

Постоянство АД сохраняется благодаря непрерывному поддержа­нию точного соответствия между величиной сердечного выброса и величиной общего периферического сопротивления сосудистой сис­темы, которое зависит от тонуса сосудов.

Гладкие мышцы сосудов постоянно, даже после устранения всех внешних нервных и гуморальных регуляторных влияний на сосуды, находятся на исходном уровне сокращения. Это так называемый базальный тонус. Возникновение его обусловлено тем, что в неко­торых участках гладкой мускулатуры сосудистой стенки имеются очаги автоматии, генерирующие ритмические импульсы. Распро­странение этих импульсов на остальные гладкие мышечные клетки вызывает их возбуждение и создает базальный тонус. Кроме того, гладкие мышцы сосудистых стенок находятся под влиянием посто­янной тонической импульсации, поступающей по волокнам симпа­тических нервов. Симпатические влияния формируются в сосудо-двигательном центре и поддерживают определенную степень сокра­щения гладкой мускулатуры сосудов.

7.2.3.1. Иннервация сосудов

Сужение артерий и артериол, снабженных преимущественно сим­патическими нервами (вазоконстрикция) было впервые обнаружено Вальтером (1842) в опытах на лягушках, а затем Бернаром (1852) в экспериментах на ухе кролика. Классический опыт Бернара состоит в том, что перерезка симпатического нерва на одной стороне шеи у кролика вызывает расширение сосудов, проявляющееся покраснением и потеплением уха оперированной стороны. Если раздражать симпатический нерв на шее, то ухо на стороне раздражаемого нерва бледнеет вследствие сужения его артерий и артериол, а температура понижается.

Главными сосудосуживающими нервами органов брюшной поло­сти являются симпатические волокна, проходящие в составе внут­ренностного нерва (п. splanchnicus). После перерезки этих нервов кровоток через сосуды брюшной полости, лишенной сосудосужива­ющей симпатической иннервации, резко увеличивается вследствие расширения артерий и артериол. При раздражении п. splanchnicus сосуды желудка и тонкой кишки суживаются.

Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий (в их адвентициальной оболочке). Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влияни­ем симпатических нервов.

Чтобы восстановить нормальный уровень артериального тонуса после перерезки симпатических нервов, достаточно раздражать их периферические отрезки электрическими стимулами частотой 1—2 в секунду. Увеличение частоты стимуляции может вызвать сужение артериальных сосудов.

Сосудорасширяющие эффекты (вазодилатация) впервые обна­ружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу нервной системы. Например, раздра­жение барабанной струны (chorda timpani) вызывает расширение сосудов подчелюстной железы и языка, п. cavernosi penis — расши­рение сосудов пещеристых тел полового члена.

В некоторых органах, например в скелетной мускулатуре, рас­ширение артерий и артериол происходит при раздражении симпа­тических нервов, в составе которых имеются, кроме вазоконстрикторов, и вазодилататоры. При этом активация α-адренорецепторов приводит к сжатию (констрикции) сосудов. Активация β-адренорецепторов, наоборот, вызывает вазодилатацию. Следует заметить, что β-адренорецепторы обнаружены не во всех органах.

Расширение сосудов (главным образом кожи) можно вызвать также раздражением периферических отрезков задних корешков спинного мозга, в составе которых проходят афферентные (чувст­вительные) волокна.

Эти факты, обнаруженные в 70-х годах прошлого столетия, вызвали среди физиологов много споров. Согласно теории Бейлиса и Л. А. Орбели, одни и те же заднекорешковые волокна передают импульсы в обоих направлениях: одна веточка каждого волокна идет к рецептору, а другая — к кровеносному сосуду. Рецепторные нейроны, тела которых находятся в спинномозговых узлах, обладают двоякой функцией: передают афферентные импульсы в спинной мозг и эфферентные импульсы к сосудам. Передача импульсов в двух направлениях возможна потому, что афферентные волокна, как и все остальные нервные волокна, обладают двусторонней про­водимостью.

Согласно другой точке зрения, расширение сосудов кожи при раз­дражении задних корешков происходит вследствие того, что в рецепторных нервных окончаниях образуются ацетилхолин и гистамин, ко­торые диффундируют по тканям и расширяют близлежащие сосуды.

7.2.3.2.          Сосудодвигательный центр

В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигательный центр — находится в продолго­ватом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перере­зать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60—70 мм рт.ст. От­сюда следует, что сосудодвигательный центр локализован в продолго­ватом мозге и находится в состоянии тонической активности, т. е. дли­тельного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.

Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго — расширение артерий и падение АД.

Считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегета­тивной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.

Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

7.2.3.3. Рефлекторная регуляция сосудистого тонуса

Как отмечалось, артерии и артериолы постоянно находятся в состоянии сужения, в значительной мере определяемого тонической активностью сосудодвигательного центра. Тонус сосудодвигательного центра зависит от афферентных сигналов, приходящих от перифе­рических рецепторов, расположенных в некоторых сосудистых об­ластях и на поверхности тела, а также от влияния гуморальных раздражителей, действующих непосредственно на нервный центр. Следовательно, тонус сосудодвигательного центра имеет как ре­флекторное, так и гуморальное происхождение.

По классификации В. Н. Черниговского, рефлекторные измене­ния тонуса артерий — сосудистые рефлексы — могут быть разделены на две группы: собственные и сопряженные рефлексы.

Собственные сосудистые рефлексы. Вызываются сиг­налами от рецепторов самих сосудов. Особенно важное физиологи­ческое значение имеют рецепторы, сосредоточенные в дуге аорты и в области разветвления сонной артерии на внутреннюю и наруж­ную. Указанные участки сосудистой системы получили название сосудистых рефлексогенных зон.

Рецепторы, расположенные в дуге аорты, являются окончаниями центростремительных волокон, проходящих в составе аортального нерва. Ционом и Людвигом этот нерв функционально был обозначен как депрессор. Электрическое раздражение центрального конца нер­ва обусловливает падение АД вследствие рефлекторного повышения тонуса ядер блуждающих нервов и рефлекторного снижения тонуса сосудосуживающего центра. В результате сердечная деятельность тормозится, а сосуды внутренних органов расширяются. Если у подопытного животного, например у кролика, перерезаны блужда­ющие нервы, то раздражение аортального нерва вызывает только рефлекторное расширение сосудов без замедления сердечного ритма.

В рефлексогенной зоне сонного синуса (каротидный синус, sinus caroticus) расположены рецепторы, от которых идут центростреми­тельные нервные волокна, образующие синокаротидный нерв, или нерв Геринга. Этот нерв вступает в мозг в составе языкоглоточного нерва. При введении в изолированный каротидный синус крови через канюлю под давлением можно наблюдать падение АД в сосудах тела (рис. 7.22). Понижение системного АД обусловлено тем, что растяжение стенки сонной артерии возбуждает рецепторы каротидного синуса, рефлекторно понижает тонус сосудосуживающего цен­тра и повышает тонус ядер блуждающих нервов.

Рецепторы сосудистых рефлексогенных зон возбуждаются при повышении давления крови в сосудах, поэтому их называют прессорецепторами, или барорецепторами. Если перерезать синокаротидные и аортальные нервы с обеих сторон, возникает гипертензия, т. е. устойчивое повышение АД, достигающее в сонной артерии собаки 200—250 мм рт.ст. вместо 100—120 мм рт.ст. в норме.

Рис. 7.22. Влияние повышения давления в изолированном каротидном (сонном) синусе (методика Е. М. Моисеева) на ар­териальное давление собаки (по Геймансу).

1 — давление в каротидном синусе; 2 — артериальное давление; 3 — отметка времени 3 с. Цифрами справа обозначены величины артериального давления, слева — величины давления  в  каротидном  синусе.

Понижение АД вследствие, например, уменьшения объема крови в организме (при кровопотерях), ослабления деятельности сердца или при перераспределении крови и оттоке ее в избыточно расши­рившиеся кровеносные сосуды какого-нибудь крупного органа ведет к тому, что прессорецепторы дуги аорты и сонных артерий раздра­жаются менее интенсивно, чем при нормальном АД. Влияние аор­тальных и синокаротидных нервов на нейроны сердечно-сосудистого центра ослабляется, сосуды суживаются, работа сердца усиливается и АД нормализуется. Этот способ регуляции АД представляет собой регуляцию «на выходе» системы, работающую по принципу отрицательной обратной связи. При отклонении АД от заданной вели­чины включаются компенсаторные реакции, восстанавливающие это давление до нормы. Это — регуляция «по рассогласованию».

Существует еще один, принципиально иной, механизм регуляции АД «на выходе» системы, «по возмущению». В данном случае компен­саторные реакции включаются еще до того, как АД изменится, пре­дупреждая отклонение его от нормы. Необходимые для этого реакции запускаются сигналами, возникающими в рецепторах растяжения миокарда и коронарных сосудов, несущих информацию о степени на­полнения кровью полостей сердца и артериальной системы. В этом случае регуляторные реакции реализуются через внутрисердечную нервную систему, а также через вегетативные центры ЦНС.

Сосудистые рефлексы можно вызвать, раздражая рецепторы не только дуги аорты или каротидного синуса, но и сосудов некоторых других областей тела. Так, при повышении давления в сосудах легкого, кишечника, селезенки наблюдаются рефлекторные изме­нения АД в других сосудистых областях.

Рефлекторная регуляция давления крови осуществляется при по­мощи не только механорецепторов, но и хеморецепторов, чувстви­тельных к изменениям химического состава крови. Такие хеморецепторы сосредоточены в аортальном и сонном гломусе (glomus caroticum, каротидные тельца), т. е. в местах локализации хеморецепторов.

Хеморецепторы чувствительны к СО2 и недостатку кислорода в крови; они раздражаются также СО, цианидами, никотином. От этих рецепторов возбуждение по центростремительным нервным волокнам передается к сосудодвигательному центру и вызывает повышение его тонуса. В результате сосуды суживаются и давление повышается. Од­новременно происходит возбуждение дыхательного центра.

Таким образом, возбуждение хеморецепторов аорты и сонной артерии вызывает сосудистые прессорные рефлексы, а раздражение механорецепторов — депрессорные рефлексы.

Хеморецепторы обнаружены также в сосудах селезенки, надпо­чечников, почек, костного мозга. Они чувствительны к различным химическим соединениям, циркулирующим в крови, например к ацетилхолину, адреналину и др. (В. Н. Черниговский).

Сопряженные сосудистые рефлексы. Это рефлексы, возникающие в других системах и органах, проявляются преиму­щественно повышением АД. Их можно вызвать, например, раздра­жением поверхности тела. Так, при болевых раздражениях рефлекторно суживаются сосуды, особенно органов брюшной полости, и АД повышается. Раздражение кожи холодом также вызывает ре­флекторное сужение сосудов, главным образом кожных артериол.

Кортикальная регуляция сосудистого тонуса. Влияние коры большого мозга на сосуды было впервые доказано путем раздражения определенных участков коры.

Кортикальные сосудистые реакции у человека изучены методом условных рефлексов. В этих опытах о сужении или расширении сосудов судят по изменению объема руки при плетизмографии. Если сосуды суживаются, то кровенаполнение, а следовательно, и объем органа уменьшаются. При расширении сосудов, наоборот, кровена­полнение и объем органа увеличиваются.

Если многократно сочетать какое-либо раздражение, например согревание, охлаждение или болевое раздражение участка кожи с каким-нибудь индифферентным раздражителем (звуковым, свето­вым и т. п.), то через некоторое число подобных сочетаний один индифферентный раздражитель может вызвать такую же сосудистую реакцию, как и безусловное раздражение.

Сосудистая реакция на ранее индифферентный раздражитель осуществляется условнорефлекторным путем, т. е. при участии коры большого мозга. У человека при этом часто возникает и соответст­вующее ощущение (холода, тепла или боли), хотя никакого раз­дражения кожи не было.

Влиянием коры большого мозга объясняется то, что у спортсменов перед началом упражнения или соревнования наблюдается повы­шение артериального давления, вызванное изменениями деятельно­сти сердца и сосудистого тонуса.

7.2.3.4. Гуморальные влияния на сосуды

Одни гуморальные агенты суживают, а другие расширяют просвет артериальных сосудов.

Сосудосуживающие вещества. К ним относятся гормо­ны мозгового вещества надпочечников — адреналин и норадреналин, а также задней доли гипофиза — вазопрессин.

Адреналин и норадреналин суживают артерии и артериолы кожи, органов брюшной полости и легких, а вазопрессин действует пре­имущественно на артериолы и капилляры.

Адреналин, норадреналин и вазопрессин оказывают влияние на сосуды в очень малых концентрациях. Так, сужение сосудов у теплокровных животных происходит при концентрации адреналина к крови 1*10 7 г/мл. Сосудосуживающий эффект этих веществ обусловливает резкое повышение АД (рис. 7.23).

Рис. 7.23. Влияние адреналина на артериальное давление собаки.

X — момент внутривенного введения 1  мг адреналина собаке с перерезанными блуждающими нервами.  Отметка времени   1   с.

К числу гуморальных сосудосуживающих факторов относится серотонин (5-гидроокситриптамин), продуцируемый в слизистой оболочке кишечника и в некоторых участках головного мозга. Се­ротонин образуется также при распаде тромбоцитов. Физиологиче­ское значение серотонина в данном случае состоит в том, что он суживает сосуды и препятствует кровотечению из пораженного со­суда. Во второй фазе свертывания крови, развивающейся после образования тромба, серотонин расширяет сосуды.

Особый сосудосуживающий фактор — ренин, образуется в почках, причем тем в большем количестве, чем ниже кровоснабжение почек. По этой причине после частичного сдавливания почечных артерий у животных возникает стойкое повышение артериального давления, обусловленное сужением артериол. Ренин представляет собой протеолитический фермент. Сам ренин не вызывает сужения сосудов, но, поступая в кровь, расщепляет α2-глобулин плазмы — ангиотензиноген и превращает его в относительно малоактивный дека-пептид — ангиотензин I. Последний под влиянием фермента дипептидкарбоксипептидазы превращается в очень активное сосудо­суживающее вещество ангиотензин II. Ангиотензин II быстро разрушается в капиллярах ангиотензиназой.

В условиях нормального кровоснабжения почек образуется срав­нительно небольшое количество ренина. В большом количестве он продуцируется при падении уровня давления крови по всей сосудистой системе. Если понизить давление крови у собаки путем кровопускания, то почки выделят в кровь повышенное количество ренина, что будет способствовать нормализации АД.

Открытие ренина и механизма его сосудосуживающего действия представляет большой клинический интерес: оно объяснило причину высокого АД, сопутствующего некоторым заболеваниям почек (гипертензия почечного происхождения).

Сосудорасширяющие вещества. В почках образуется также и сосудорасширяющее вещество, названное медуллином (вы­рабатывается в мозговом слое почки). Это вещество представляет собой липид.

В настоящее время известно образование во многих тканях тела ряда сосудорасширяющих веществ, получивших название простагландинов. Такое название дано потому, что впервые эти-вещества были найдены в семенной жидкости у мужчин и предполагалось, что их образует предстательная железа. Простагландины представ­ляют собой производные ненасыщенных жирных кислот.

Из подчелюстной, поджелудочной желез, из легких и некоторых других органов получен активный сосудорасширяющий полипептид брадикинин. Он вызывает расслабление гладкой мускулатуры артериол и понижает уровень АД. Брадикинин появляется в коже при действии тепла и является одним из факторов, обусловливающих расширение сосудов при нагревании. Он образуется при расщеплении одного из глобулинов плазмы крови под влиянием находящегося в тканях фермента калликреина.

К сосудорасширяющим веществам относится ацетилхолин (АХ), который образуется в окончаниях парасимпатических нервов и сим­патических вазодилататоров. Он быстро разрушается в крови, по­этому его действие на сосуды в физиологических условиях чисто местное.

Сосудорасширяющим веществом является также гистамин — вещество, образующееся в слизистой оболочке желудка и кишеч­ника, а также во многих других органах, в частности в коже при ее раздражении и в скелетной мускулатуре во время работы. Гистамин расширяет артериолы и увеличивает кровенаполнение капилляров. При введении 1—2 мг гистамина в вену кошке, несмотря на то что сердце продолжает работать с прежней силой, уровень АД резко падает вследствие уменьшения притока крови к сердцу: очень большое количество крови животного оказывается сосредоточенным в капиллярах, главным образом брюшной поло­сти. Снижение АД и нарушение кровообращения при этом подобны тем, какие возникают при большой кровопотере. Они сопровож­даются нарушением деятельности ЦНС вследствие расстройства мозгового кровообращения. Совокупность перечисленных явлений объединяется понятием «шок». Тяжелые нарушения, возникающие в организме при введении больших доз гистамина, называют гистаминовым шоком.

Усиленным образованием и действием гистамина объясняют ре­акцию покраснения кожи. Эта реакция вызывается влиянием раз- личных раздражений, например потирание кожи, тепловое воздей­ствие, ультрафиолетовое облучение. Кроме гистамина и АХ, еще ряд других сосудорасширяющих веществ усиленно высвобождается из связанного состояния или образуется в скелетной мускулатуре при ее работе: АТФ и продукты ее распада (в частности, адениловая кислота), молочная и угольная кислоты и др.

7.2.3.4. Местные механизмы регуляции кровообращения

При усиленной функции любого органа или ткани возрастает ин­тенсивность процессов метаболизма и повышается концентрация продуктов обмена (метаболитов) — оксида углерода (IV) СО2 и угольной кислоты, аденозиндифосфата, фосфорной и молочной кис­лот и других веществ. Увеличивается осмотическое давление (вслед­ствие появления значительного количества низкомолекулярных про­дуктов), уменьшается величина рН в результате накопления водород­ных ионов. Все это и ряд других факторов приводят к расширению сосудов в работающем органе. Гладкая мускулатура сосудистой стен­ки очень чувствительна к действию этих продуктов обмена.

Попадая в общий кровоток и достигая с током крови сосудодвигательного центра, многие из этих веществ повышают его тонус. Возникающее при центральном действии указанных веществ генерализованное повышение тонуса сосудов в организме приводит к увеличению системного АД при значительном возрастании кровотока через работающие органы.

В скелетной мышце в состоянии покоя на 1 мм2 поперечного сечения приходится около 30 открытых, т. е. функционирующих, капилляров, а при максимальной работе мышцы число открытых капилляров на 1 мм2 возрастает в 100 раз.

Минутный объем крови, нагнетаемый сердцем при интенсивной физической работе, может увеличиться не более чем в 5—6 раз, поэтому возрастание кровоснабжения работающих мышц в 100 раз возможно лишь вследствие перераспределения крови. Так, в период пищеварения наблюдается усиленный приток крови к пищевари­тельным органам и уменьшение кровоснабжения кожи и скелетной мускулатуры. Во время умственного напряжения усиливается кро­воснабжение мозга.

Напряженная мышечная работа ведет к сужению сосудов пище­варительных органов и усиленному притоку крови к работающим скелетным мышцам. Приток крови к этим мышцам возрастает в результате местного сосудорасширяющего действия продуктов об­мена, образующихся в работающих мышцах, а также вследствие рефлекторного расширения сосудов. Так, при работе одной руки сосуды расширяются не только в этой, но и в другой руке, а также в нижних конечностях.

Высказано предположение, что в сосудах работающего органа то­нус мышц понижается не только вследствие накопления продуктов об­мена, но и в результате воздействия механических факторов: сокра­щение скелетных мышц сопровождается растяжением сосудистых стенок, уменьшением сосудистого тонуса в данной области и, следова­тельно, значительным увеличением местного кровообращения.

Кроме продуктов обмена, накапливающихся в работающих орга­нах и тканях, на мышцы сосудистой стенки влияют и другие гумораль­ные факторы: гормоны, ионы и т. д. Так, гормон мозгового вещества надпочечников адреналин вызывает резкое сокращение гладких мышц артериол внутренних органов и вследствие этого значительный подъем системного АД. Адреналин усиливает также сердечную дея­тельность, однако сосуды работающих скелетных мышц и сосуды го­ловного мозга под влиянием адреналина не суживаются. Таким обра­зом, выброс в кровь большого количества адреналина, образующегося при эмоциональных напряжениях, значительно повышает уровень си­стемного АД и одновременно улучшает кровоснабжение мозга и мышц и тем самым приводит к мобилизации энергетических и пластических ресурсов организма, необходимых в чрезвычайных условиях, при ко­торых возникает эмоциональное напряжение.

Сосуды ряда внутренних органов и тканей обладают индивиду­альными особенностями регуляции, которые объясняются структурой и функцией каждого из этих органов или тканей, а также степенью их участия в тех или иных общих реакциях организма. Например, сосуды кожи играют важную роль в теплорегуляции. Расширение их при повышении температуры тела способствует отдаче тепла в окружающую среду, а сужение снижает теплоотдачу.

Перераспределение крови происходит также при переходе из горизонтального положения в вертикальное. При этом затрудняется венозный отток крови от ног и количество крови, поступающей в сердце по нижней полой вене, уменьшается (при рентгеноскопии четко видно уменьшение размеров сердца). Вследствие этого веноз­ный приток крови к сердцу может значительно уменьшаться.

В последние годы установлена важная роль эндотелия со­судистой стенки в регуляции кровотока. Эндотелий сосудов синтезирует и выделяет факторы, активно влияющие на тонус глад­ких мышц сосудов. Клетки эндотелия — эндотелиоциты под влиянием химических раздражителей, приносимых кровью, или под влиянием механического раздражения (растяжение) способны вы­делять вещества, непосредственно действующие на гладкие мышеч­ные клетки сосудов, вызывая их сокращение или расслабление. Срок жизни этих веществ мал, поэтому действие их ограничивается сосудистой стенкой и не распространяется обычно на другие гладкомышечные органы. Одними из факторов, вызывающих расслаб­ление сосудов, являются, по-видимому, нитраты и нитриты. Воз­можным сосудосуживающим фактором является вазоконстрикторный пептид эндотелии, состоящий из 21 аминокислотного остатка.

7.2.3.6. Регуляция объема циркулирующей крови

Для нормального кровоснабжения органов и тканей, поддержания постоянства АД необходимо определенное соотношение между объ­емом циркулирующей крови (ОЦК) и общей емкостью всей сосудистой системы. Это соответствие достигается при помощи ряда нервных и гуморальных регуляторных механизмов.

Рассмотрим реакции организма на уменьшение ОЦК при кровопотере. В подобных случаях приток крови к сердцу уменьшается и уровень АД снижается. В ответ на это возникают реакции, на­правленные на восстановление нормального уровня АД. Прежде всего происходит рефлекторное сужение артерий. Кроме того, при кровопотере наблюдается рефлекторное усиление секреции сосудо­суживающих гормонов: адреналина — мозговым слоем надпочечни­ков и вазопрессина — задней долей гипофиза, а усиление секреции этих веществ приводит к сужению артериол. О важной роли адре­налина и вазопрессина в поддержании АД при кровопотере свиде­тельствует тот факт, что смерть при потере крови наступает раньше, чем после удаления гипофиза и надпочечников. Помимо симпатоадреналовых влияний и действия вазопрессина, в поддержании АД и ОЦК на нормальном уровне при кровопотере, особенно в поздние сроки, участвует система ренин—ангиотензин—альдостерон. Возни­кающее после кровопотери снижение кровотока в почках приводит к усиленному выходу ренина и большему, чем в норме, образованию ангиотензина II, который поддерживает АД. Кроме того, ангиотензин II стимулирует выход из коркового вещества надпочечников альдостерона, который, во-первых, способствует поддержанию АД за счет увеличения тонуса симпатического отдела вегетативной нервной системы, а во-вторых, усиливает реабсорбцию в почках натрия. Задержка натрия является важным фактором увеличения реабсорбции воды в почках и восстановления ОЦК.

Для поддержания АД при открытых кровопотерях имеет значение также переход в сосуды тканевой жидкости и в общий кровоток того количества крови, которое сосредоточено в так называемых кровяных депо. Выравниванию давления крови способствует также рефлекторное учащение и усиление сокращений сердца. Благодаря этим нейрогуморальным влияниям при быстрой потере 20—25% крови некоторое время может сохраняться достаточно высокий уро­вень АД.

Существует, однако, некоторый предел потери крови, после которого никакие регуляторные приспособления (ни сужение со­судов, ни выбрасывание крови из депо, ни усиленная работа сердца и т. д.) не могут удержать АД на нормальном уровне: если организм быстро теряет более 40—50% содержащейся в нем крови, то АД резко понижается и может упасть до нуля, что приводит к смерти.

Указанные механизмы регуляции сосудистого тонуса являются безусловными, врожденными, но в течение индивидуальной жизни животных на их основе вырабатываются сосудистые условные ре­флексы, благодаря которым сердечно-сосудистая система включается в реакции, необходимые организму при действии лишь одного сиг­нала, предшествующего тем или иным изменениям окружающей среды. Таким образом организм оказывается заранее приспособлен­ным к предстоящей деятельности.

7.2.3.7. Кровяное депо

В состоянии покоя у человека до 45—50% всего объема крови, имеющейся в организме, находится в кровяных депо: селезенке, печени, подкожном сосудистом сплетении и легких. В селезенке содержится 500 мл крови, которая может быть почти полностью выключена из циркуляции.

Резервуарная функция селезенки. Осуществляется благодаря осо­бой структуре ее сосудов. Кровь из капилляров поступает сначала в венозные синусы и лишь затем переходит в вены. Синусы имеют легко растяжимые стенки и могут вмещать большое количество крови и, опорожняясь, изливать эту кровь в селезеночную вену и, следовательно, в общий кровоток.

В селезеночных артериях и селезеночных синусах у места впа­дения их в венулы имеются сфинктеры, регулирующие приток и отток крови. При сокращении венозных сфинктеров отток крови затрудняется и кровь задерживается в синусах, вызывая увеличение размеров селезенки. При этом сфинктеры обычно сдавливают просвет сосудов не полностью. Остаются узкие просветы, задерживающие форменные элементы крови, но пропускающие плазму. При откры­тых артериальных сфинктерах приток крови в селезенку не огра­ничен, давление в ее сосудах растет и повышается уровень филь­трационного давления, вследствие чего плазма крови проходит через венозные сфинктеры в вены и общий кровоток. Благодаря этому кровь в сосудах селезенки сгущается. Селезенка может вместить до 1/5 эритроцитов всей крови организма.

При физических и эмоциональных напряжениях влияния, иду­щие к селезенке по симпатическим волокнам, а также адреналин, выбрасываемый в кровь мозговым веществом надпочечников, вызы­вают сокращение гладкой мускулатуры капсулы, трабекул и сосудов в данном органе. Венозные сфинктеры при этом открываются и депонированная в селезенке кровь выбрасывается в общий кровоток. В кровоток поступает дополнительно и большое количество эрит­роцитов. Таким образом, селезенка является основным депо эрит­роцитов. Большое количество их, поступая в циркулирующую кровь при физических и эмоциональных напряжениях, значительно по­вышает кислородную емкость крови.

Гладкие мышцы селезенки могут сокращаться под влиянием импульсов, поступающих из коры большого мозга, т. е. условно-рефлекторным путем. Вследствие этого любые сигналы о предсто­ящей физической нагрузке или эмоциональном напряжении могут вызывать сокращение гладких мышц селезенки и выход в кровь большого количества эритроцитов. Организм оказывается заблаго­временно подготовленным к предстоящим физическим и эмоцио­нальным нагрузкам. Выход крови из селезенки наблюдается также при кровопотерях, ожогах, травмах, гипоксии, асфиксии, анестезии и при ряде других состояний.

Депонирующая роль печени и кожи. Кровь, находящаяся в сосудах печени и сосудистом сплетении кожи (у человека до 1 л), циркулирует значительно медленнее (в 10—20 раз), чем в других сосудах. Поэтому кровь в данных органах задерживается, т. е. они также являются как бы резервуарами крови.

Большую роль в качестве депо крови играет печень. В стенках крупных ветвей печеночных вен имеются мышечные пучки, обра­зующие сфинктеры, которые, сокращаясь, суживают устье вен, что препятствует оттоку крови от печени. Кровь, находящаяся в печени, не выключается из циркуляции, как это происходит в селезенке, но ее движение замедляется. Регуляция кровенаполнения печени, а следовательно, ее функция как депо крови осуществляется ре­флекторным путем. Роль депо крови выполняют вся венозная система и в наибольшей степени вены кожи.

7.2.4. Регионарное кровообращение

Каждые орган и ткань: мозг, сердце, легкие, печень, кожа, мышцы — обладают индивидуальными физиологическими особен­ностями кровообращения.

Непрерывность движения крови в организме человека обеспечи­вается как системой последовательно соединенных сосудов, осуще­ствляющих системную гемодинамику, так и системой параллельно подключенных к аорте и полым венам сосудистых русел, представ­ленных сосудами различных органов и обеспечивающих регионарную гемодинамику. Хотя в каждом отдельно взятом органе (регионе) кругооборот крови в процессе ее движения не совершается, для обозначения гемодинамики в органах употребляется термин «ре­гионарное   кровообращение».

Главное назначение кровообращения, в обеспечении обмена га­зами, веществами и продуктами их метаболизма, а также тепловой энергией между кровью и клетками тканей, реализуется на уровне сосудистой системы органов. Именно здесь осуществляется непос­редственное соприкосновение обменных сосудов с тканевыми эле­ментами, а структурные особенности строения стенки кровеносных капилляров и низкая линейная скорость кровотока в них создают оптимальные условия для полноценного осуществления обменно-транспортной функции кровообращения. Кроме того, процессы не­прерывного приспособления организма к постоянно изменяющимся условиям внешней и внутренней среды вовлекают в активную де­ятельность различные регионы и группы органов. Это требует четкой координации и высокой надежности в адекватном перераспределении крови между работающими органами. Наконец, сосудистые сети органов, выполняя в общей схеме устройства сердечно-сосудистой системы роль параллельно включенных проводников, в значительной мере определяют величину общего периферического сопротивления сосудов и тем самым влияют на показатели системной гемодинамики.

В то время как кровообращение в мышцах и большинстве внут­ренних органов определяется общими принципами и закономерно­стями, описанными выше, кровообращение в ряде регионов требует специального рассмотрения.

7.2.4.1. Мозговое кровообращение

Головной мозг характеризуется непрерывно протекающими энер­гоемкими процессами, требующими потребления глюкозы мозговой тканью. Известно, что нервная ткань практически не обладает ни субстратом для анаэробных окислительных процессов, ни запасами кислорода, а следовательно, для нормального функционирования мозга необходима высокая интенсивность его кровоснабжения. В свя­зи с этим головной мозг, средняя масса которого 1400—1500 г, в состоянии функционального покоя получает около 750 мл/мин кро­ви, что составляет примерно 15% от сердечного выброса. Объемная скорость кровотока при этих условиях соответствует 50— 60 мл/100 г/мин. Следует отметить, что серое вещество обеспечи­вается кровью интенсивнее, чем белое, что обусловлено более вы­сокой клеточной активностью. У детей первого года жизни величина кровотока на 50—55% больше, а в старческом возрасте примерно на 20% меньше, чем у человека в зрелом возрасте. Снижение интенсивности кровоснабжения головного мозга чревато развитием дефицита кислорода и глюкозы в мозговой ткани, что может привести к нарушениям деятельности мозга. В здоровом организме, благодаря надежным механизмам ауторегуляции мозгового кровотока, пита­ние мозга остается практически неизменным при падении системного АД вплоть до 50 мм рт.ст.

Регуляция мозгового кровообращения. Известно, что мозг рас­положен в ригидном костном образовании — черепе (исключение составляют дети грудного возраста, у которых имеются роднички, придающие некоторую подвижность стенкам черепной коробки). Поскольку в полости черепа, помимо мозгового вещества, содержатся кровь и цереброспинальная жидкость, являющиеся малосжимаемыми жидкостями, их общий объем остается почти постоянным. При избыточности кровоснабжения может произойти излишняя гидрата­ция ткани мозга с последующим развитием отека мозга и повреж­дениями, несовместимыми с жизнью, жизненно важных центров. Основной причиной избыточности кровоснабжения головного мозга может служить увеличение системного АД, однако в норме при участии ауторегуляторных сосудистых реакций мозг предохранен от избыточного кровенаполнения при повышении давления вплоть до 160—170 мм рт. ст. Помимо ауторегуляции кровотока, предо­хранение головного мозга как органа, близко расположенного к сердцу, от высокого кровяного давления и избыточности пульсации осуществляется и за счет особенностей строения сосудистой системы мозга. В частности, эту функцию достаточно эффективно выполняют многочисленные изгибы (сифоны) по ходу сосудистого русла, которые способствуют значительному перепаду давления и сглаживанию пульсирующего кровотока.

В активно работающем мозге возникает потребность в увеличении интенсивности кровоснабжения. Благодаря феномену функциональ­ной (рабочей) гиперемии такая возросшая потребность полностью удовлетворяется, не вступая в противоречие с необходимостью предотвращения головного мозга от избыточности кровенаполнения. Объ­ясняется это специфическими особенностями мозгового кровообра­щения. Во-первых, при повышенной активности всего организма (усиленная физическая работа, эмоциональное возбуждение и т. д.) кровоток в мозге увеличивается примерно на 20—25%, что не оказывает повреждающего действия, поскольку мозг — единствен­ный орган, основной сосудистый бассейн которого располагается на поверхности (система сосудов мягкой мозговой оболочки) и, за счет расстояния до твердой мозговой оболочки, располагает резервом для некоторого кровенаполнения. Во-вторых, физиологически активное состояние человека (включая умственную деятельность) характери­зуется развитием процесса активации в строго соответствующих нервных центрах (корковых представительствах функций), где и формируются доминантные очаги. В таком случае нет необходимости в увеличении суммарного мозгового кровотока, а лишь требуется внутримозговое перераспределение кровотока в пользу активно ра­ботающих зон (областей, участков) мозга. Эта функциональная потребность реализуется путем активных сосудистых реакций, раз­вивающихся в пределах соответствующих сосудистых модулей — структурно-функциональных единиц микрососудистой системы го­ловного мозга. Следовательно, особенностью мозгового кровообра­щения является высокая гетерогенность и изменчивость распреде­ления локального кровотока в микроучастках нервной ткани.

7.2.4.2. Венечное кровообращение

Поперечнополосатая мускулатура сердца в отличие от скелетной характеризуется высоким потреблением энергии аэробного проис­хождения, что обусловливает значительную потребность миокарда в интенсивном кровоснабжении. Доставка артериальной крови в миокард осуществляется венечными (коронарными) артериями, ко­торые, разветвляясь и широко анастомозируя во всех слоях и отделах сердца, образуют густую сеть капилляров и практически каждое мышечное волокно снабжено собственным обменным сосудом. Ве­нозный отток от миокарда осуществляется через широкий венечный (коронарный) синус, открывающийся в полость правого предсердия. Прекращение кровотока по коронарным артериям при их закупорке или значительном спазме приводит к стойкому снижению крово­снабжения сердечной мышцы и к развитию инфаркта миокарда, что сопровождается нарушением нагнетательной функции сердца и может привести к смерти. Поскольку в системе коронарного русла достаточно хорошо представлен модульный принцип организации, аналогичные изменения кровотока в пределах отдельных сосудистых модулей могут проявиться в виде микроинфарктов, осложняющихся нарушением проводимости и сократимости сердечной мышцы.

В состоянии функционального покоя у взрослого человека коро­нарный кровоток составляет 60—70 мл/100 г/ мин. От общего сер­дечного выброса кровоснабжение миокарда составляет 4—5%, т.е. в среднем 200—250 мл/мин. В условиях интенсивной физической работы, когда происходит активация сердечной деятельности, объ­емная скорость кровотока в сердечной мышце возрастает, достигая 350—400 мл/100 г/мин (функциональная гиперемия).

Коронарный кровоток существенно изменяется в зависимости от периода сердечного цикла. В период систолы желудочков интенсив­ность коронарного кровотока (особенно в миокарде левого желудоч­ка) снижается, а во время диастолы увеличивается. Описанные периодические колебания объясняются двумя основными причинами: первая из них обусловлена пульсирующим характером давления в аорте, а вторая (основная) — изменениями напряжения в стенке миокарда. В систолу, когда это напряжение значительно возрастает, сдавливаются сосуды среднего и внутреннего слоев миокарда, дви­жение крови в левой коронарной артерии затруднено. В диастолу напряжение в миокарде падает, проходимость сосудов восстанавли­вается и кровоток увеличивается. В увеличении кровотока через миокард в период диастолы не исключена роль реактивной (постокклюзионной) гиперемии.

Несмотря на выраженное снижение кровотока во время систолы, метаболические потребности миокарда при нормальной частоте со­кращений сердца полностью удовлетворяются за счет ряда функ­циональных особенностей: 1) высокой экстракцией кислорода миоглобином мышцы сердца (до 75%); 2) высокой объемной скоростью кровотока в миокарде; 3) высокой растяжимостью коронарных со­судов; 4) фазными колебаниями кровотока в венах сердца проти­воположной направленности, а именно ускорением оттока крови в систолу и замедлением его в диастолу. Вместе с тем в условиях тахикардии, когда происходит укорочение диастолы, эти функцио­нальные особенности в меньшей степени компенсируют систоличе­ское ограничение кровоснабжения сердца.

Регуляция венечного кровообращения. Представлена местными и дистантными механизмами. Для сосудов миокарда характерна высокая выраженность базального тонуса, а также миогенная ме­таболическая активность гладких мышечных клеток (ГМК). Диа­пазон ауторегуляции кровотока в сердечной мышце находится в пределах 70—160 мм рт.ст. Метаболическая регуляция коронарных сосудов проявляет наибольшую активность по отношению к ткане­вому рО2, концентрациям аденозина и метаболитам макроэргических соединений.

Вопрос о характере нервной регуляции коронарного кровообра­щения не до конца ясен. Считают, что симпатические адренергические нервные волокна вызывают в ряде случаев (физическая работа, стенические отрицательные эмоции) расширение венечных сосудов и увеличение кровотока в миокарде. Наряду с этим в других условиях (астенические отрицательные эмоции, боль и т. п.) на­блюдаются симпатические коронаросуживающие эффекты. Причины таких противоположных влияний связывают с избирательной «на­стройкой» чувствительности α- и β-адренорецепторов, широко пред­ставленных в ГМК коронарных сосудов, а также с концентрацией катехоламинов, которые в зависимости от «дозы-эффекта» вмешиваются в метаболизм ГМК и интерстициальной ткани. Парасимпа­тические холинергические влияния скорее всего опосредованно, уг­нетая сократительную активность сердечной мышцы, снижают ее метаболические потребности и тем самым приводят к снижению кровоснабжения миокарда.

7.2.4.3. Легочное кровообращение

Важнейшей особенностью организации кровоснабжения легких является ее двухкомпонентный характер, поскольку легкие получают кровь из сосудов малого круга кровообращения и бронхиальных сосудов большого круга кровообращения. Функциональное значение сосудистой системы малого круга кровообращения состоит в обес­печении газообменной функции легких, тогда как бронхиальные сосуды удовлетворяют собственные циркуляторно-метаболические потребности легочной ткани.

Легочная артерия и ее ветви диаметром более 1 мм являются сосудами эластического типа, что способствует значительному сгла­живанию пульсации крови, поступающей во время систолы правого желудочка в легкие. Более мелкие артерии (диаметром от 1 мм до 100 мкм) относят к артериям мышечного типа. Они обусловливают величину гидродинамического сопротивления в малом круге крово­обращения. В самых мелких артериях (диаметром менее 100 мкм) и в артериолах содержание ГМК прогрессивно снижается и в артериолах диаметром менее 45 мкм они полностью отсутствуют. По­скольку безмышечные артериолы тесно связаны с окружающей аль­веолярной паренхимой, интенсивность кровоснабжения легких не­посредственно зависит от интенсивности вентиляции альвеол.

Капилляры легких образуют на поверхности альвеол очень густую сеть и при этом на одну альвеолу приходится несколько капилляров. В связи с тем что стенки альвеол и капилляров тесно контактируют, образуя как бы единую альвеолярно-капиллярную мембрану, созда­ются наиболее благоприятные условия для эффективных вентиляционно-перфузионных взаимоотношений. В условиях функциональ­ного покоя у человека капиллярная кровь находится в контакте с альвеолярным воздухом в течение примерно 0,75 с. При физической работе продолжительность контакта укорачивается более чем в два раза и составляет в среднем 0,35 с.

В результате слияния капилляров образуются характерные для легочной сосудистой системы безмышечные посткапиллярные венулы, трансформирующиеся в венулы мышечного типа и далее в легочные вены. Особенностью сосудов венозного отдела являются их тонкостенность и слабая выраженность ГМК. Структурные осо­бенности легочных сосудов, в частности артерий, определяют боль­шую растяжимость сосудистого русла, что создает условия для более низкого сопротивления (приблизительно в 10 раз меньше, чем в системе большого круга кровообращения), а следовательно, более низкого кровяного давления. В связи с этим система малого круга кровообращения относится к области низкого давления. Давление в легочной артерии составляет в среднем 15—25 мм рт.ст., а в венах — 6—8 мм рт.ст. Градиент давления равен примерно 9—17 мм рт.ст., т. е. значительно меньше, чем в большом круге крово­обращения. Несмотря на это, повышение системного АД или же значительное увеличение кровотока (при активной физической ра­боте человека) существенно не влияет на трансмуральное давление в легочных сосудах из-за их большей растяжимости. Большая рас­тяжимость легочных сосудов определяет еще одну важную функ­циональную особенность этого региона, заключающуюся в способ­ности депонировать кровь и тем самым предохранять легочную ткань от отека при увеличении минутного объема кровотока.

Минутный объем крови в легких соответствует минутному объему крови в большом круге кровообращения и в условиях функциональ­ного покоя составляет в среднем 5 л/мин. При активной физической работе этот показатель может возрасти до 25 л/мин.

Распределение кровотока в легких характеризуется неравномер­ностью кровоснабжения верхних и нижних долей, так как низкое внутрисосудистое давление определяет высокую зависимость легоч­ного кровотока от гидростатического давления. Так, в вертикальном положении верхушки легкого расположены выше основания легочной артерии, что практически уравнивает АД в верхних долях легких с гидростатическим давлением. По этой причине капилляры верхних долей слабо перфузируются, тогда как в нижних долях благодаря суммированию АД с гидростатическим давлением кровоснабжение обильное. Описанная особенность легочного кровообращения играет важную роль в установлении перфузионно-вентиляционных отно­шений в дыхательной системе.

Интенсивность кровоснабжения легких зависит от циклических изменений плеврального и альвеолярного давлений в различные фазы дыхательного цикла. Во время вдоха, когда плевральное и альвеолярное давление уменьшаются, происходит пассивное расши­рение крупных внелегочных и внутрилегочных сосудов, сопротив­ление сосудистого русла дополнительно снижается и кровоснабжение легких в фазу вдоха увеличивается.

Регуляция легочного кровообращения. Местная регуля­ция легочного кровотока в основном представлена метаболическими факторами, ведущая роль среди которых принадлежит рО2 и рСО2. При снижении рО2 и/или повышении рСО2 происходит местная вазоконстрикция легочных сосудов. Следовательно, особенностью местной регуляции кровоснабжения легких является строгое соот­ветствие интенсивности локального кровотока уровню вентиляции данного участка легочной ткани.

Нервная регуляция легочного кровообращения осуществ­ляется в основном симпатическими сосудосуживающими волокнами. Природа сосудорасширяющих нервных влияний пока не выяснена. Система легочного кровообращения выделяется среди всех регионов наибольшей функциональной связью с центральной регуляцией си­стемной гемодинамики в большом круге кровообращения. Известно, что рефлексы саморегуляции кровообращения с баро- и хеморецепторов сонного (каротидного) синуса сопровождаются активными из­менениями легочного кровотока. В свою очередь сосуды малого круга кровообращения являются мощной рефлексогенной зоной, порождающей рефлекторные изменения в сердечно-сосудистой сис­теме.

Гуморальная регуляция легочного кровообращения в значительной степени обусловлена влиянием таких биологически активных веществ, как ангиотензин, серотонин, гистамин, простагландины, которые вызывают в основном вазоконстрикцию в легких и повышение кровяного давления в легочных артериях. Активность других, широко распространенных в организме гуморальных фак­торов (адреналин, норадреналин, ацетилхолин) в системе регуляции легочного кровотока выражена в меньшей степени.

7.3. ЛИМФООБРАЩЕНИЕ

7.3.1. Строение лимфатической системы

Лимфатическая система человека и теплокровных животных со­стоит из следующих образований: 1) лимфатических капилляров, представляющих собой замкнутые с одного конца эндотелиальные трубки, пронизывающие практически все органы и ткани; 2) внутриорганных сплетений посткапилляров и мелких, снабженных кла­панами, лимфатических сосудов; 3) экстраорганных отводящих лим­фатических сосудов, впадающих в главные лимфатические стволы, прерывающихся на своем пути лимфатическими узлами; 4) главных лимфатических протоков — грудного и правого лимфатического, впадающих в крупные вены шеи. Лимфатические капилляры и посткапилляры представляют собой часть лимфатической системы; в них под влиянием изменяющихся градиентов гидростатического и коллоидно-осмотического давлений происходит образование лим­фы. Стенки лимфатических капилляров и посткапилляров представ­лены одним слоем эндотелиальных клеток, прикрепленных с по­мощью коллагеновых волокон к окружающим тканям. В стенке лимфатических капилляров между эндотелиальными клетками име­ется большое количество пор, которые при изменении градиента давления могут открываться и закрываться. Внутри- и внеорганные лимфатические сосуды, лимфатические стволы и протоки выполняют преимущественно транспортную функцию, обеспечивая доставку об­разовавшейся в лимфатической системе лимфы в систему кровенос­ных сосудов. Лимфатические сосуды являются системой коллекторов, представляющих собой цепочки лимфангионов. Лимфангион явля­ется морфофункциональной единицей лимфатических сосудов и со­стоит из мышечной «манжетки», представленной спиралеобразно расположенными гладкими мышечными клетками и двух клапа­нов — дистального и проксимального. Крупные лимфатические со­суды конечностей и внутренних органов сливаются в грудной и правый лимфатический протоки. Из протоков лимфа поступает через правую и левую подключичную вены в общий кровоток.

7.3.2. Образование лимфы

Лимфа — жидкость, возвращаемая в кровоток из тканевых пространств по лимфатической системе. Лимфа образуется из тка­невой (интерстициальной) жидкости, накапливающейся в межкле­точном пространстве в результате преобладания фильтрации жид­кости над реабсорбцией через стенку кровеносных капилляров. Дви­жение жидкости из капилляров и внутрь их определяется соотношением гидростатического и осмотического давлений, дейст­вующих через эндотелий капилляров. Осмотические силы стремятся удержать плазму внутри кровеносного капилляра для сохранения равновесия с противоположно направленными гидростатическими силами. Вследствие того что стенка кровеносных капилляров не является полностью непроницаемой для белков, некоторое количе­ство белковых молекул постоянно просачивается через нее в интерстициальное пространство. Накопление белков в тканевой жид­кости увеличивает ее осмотическое давление и приводит к нару­шению баланса сил, контролирующих обмен жидкости через капиллярную мембрану. В результате концентрация белков в ин­терстициальной ткани повышается и белки по градиенту концент­рации начинают поступать непосредственно в лимфатические ка­пилляры. Кроме того, движение белков внутрь лимфатических ка­пилляров осуществляется посредством пиноцитоза.

Утечка белков плазмы в тканевую жидкость, а затем в лимфу зависит от органа. Так, в легких она равна 4%, в желудочно-ки­шечном тракте — 4,1%, сердце — 4,4%, в печени достигает 6,2%.

7.3.3. Состав лимфы

В состав лимфы входят клеточные элементы, белки, липиды, низкомолекулярные органические соединения (аминокислоты, глю­коза, глицерин), электролиты. Клеточный состав лимфы представлен в основном лимфоцитами. В лимфе грудного протока их число достигает 8*109/л. Эритроциты в лимфе в норме встречаются в ограниченном количестве, их число значительно возрастает при травмах тканей, тромбоциты в норме не определяются. Макрофаги и моноциты встречаются редко. Гранулоциты могут проникать в лимфу из очагов инфекции. Ионный состав лимфы не отличается от ионного состава плазмы крови и интерстициальной жидкости. В то же время по содержанию и составу белков и липидов лимфа значительно отличается от плазмы крови. В лимфе человека содер­жание белков составляет в среднем 2—3% от объема. Концентрация белков в лимфе зависит от скорости ее образования: увеличение поступления жидкости в организм вызывает рост объема образую­щейся лимфы и уменьшает концентрацию белков в ней. В лимфе в небольшом количестве содержатся все факторы свертывания, ан­титела и различные ферменты, имеющиеся в плазме. Холестерин и фосфолипиды находятся в лимфе в виде липопротеинов. Содер­жание свободных жиров, которые находятся в лимфе в виде хиломикронов, зависит от количества жиров, поступивших в лимфу из кишечника. Тотчас после приема пищи в лимфе грудного протока содержится большое количество липопротеинов и липидов, всосав­шихся в желудочно-кишечном тракте. Между приемами пищи со­держание липидов в грудном протоке минимально.

7.3.4. Движение лимфы

Скорость и объем лимфообразования определяются процессами микроциркуляции и взаимоотношением системной и лимфатической циркуляции. Так, при минутном объеме кровообращения, равном 6 л, через стенки кровеносных капилляров в организме человека фильтруется около 15 мл жидкости. Из этого количества 12 мл жидкости реабсорбируется. В интерстициальном пространстве оста­ется 3 мл жидкости, которая в дальнейшем возвращается в кровь по лимфатическим сосудам. Если учесть, что за час в крупные лимфатические сосуды поступает 150—180 мл лимфы, а за сутки через грудной лимфатический проток проходит до 4 л лимфы, которая в дальнейшем поступает в общий кровоток, то значение возврата лимфы в кровь становится весьма ощутимым.

Движение лимфы начинается с момента ее образования в лим­фатических капиллярах, поэтому факторы, которые увеличивают скорость фильтрации жидкости из кровеносных капилляров, будут также увеличивать скорость образования и движения лимфы. Фак­торами, повышающими лимфообразование, являются увеличение гидростатического давления в капиллярах, возрастание общей по­верхности функционирующих капилляров (при повышении функ­циональной активности органов), увеличение проницаемости капил­ляров, введение гипертонических растворов. Роль лимфообразования в механизме движения лимфы заключается в создании первона­чального гидростатического давления, необходимого для перемеще­ния лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды.

В лимфатических сосудах основной силой, обеспечивающей пе­ремещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов. Лимфангионы, которые можно рассматривать как трубчатые лимфатические микросердца, имеют в своем составе все необходимые элементы для активного транспорта лимфы: развитую мышечную «манжетку» и клапаны. По мере поступления лимфы из капилляров в мелкие лимфатические сосуды происходит наполнение лимфангионов лимфой и растяжение их стенок, что приводит к возбуждению и сокращению гладких мышечных клеток мышечной «манжетки». Сокращение гладких мышц в стенке лимфангиона повышает внутри него давление до уровня, достаточного для закрытия дистального клапана и открытия проксимального. В результате происходит пе­ремещение лимфы в следующий центрипетальный лимфангион. За­полнение лимфой проксимального лимфангиона приводит к растя­жению его стенок, возбуждению и сокращению гладких мышц и перекачиванию лимфы в следующий лимфангион. Таким образом, последовательные сокращения лимфангионов приводят к перемеще­нию порции лимфы по лимфатическим коллекторам до места их впадения в венозную систему. Работа лимфангионов напоминает деятельность сердца. Как в цикле сердца, в цикле лимфангиона имеются систола и диастола. По аналогии с гетерометрической саморегуляцией в сердце, сила сокращения гладких мышц лимфан­гиона определяется степенью их растяжения лимфой в диастолу. И наконец, как и в сердце, сокращение лимфангиона запускается и управляется одиночным платообразным потенциалом действия (рис. 7.24).

Рис. 7.24. Механизм движения лимфы по лимфатическим сосудам (по Г. И. Лобову). А — лимфангион в фазе сокращенна; Б — лимфангион а фазе заполнения; В — лимфангион в состоянии покоя; а — мышечная манжетка лимфангиона: б — клапан; 1 — мембранный потенциал и потенциал действия миоцитов лимфангиона; 2 — сокращение стенки лимфангиона; 3 — давление в проекте лимфангиона. Стрелкой  показано направление движения лимфы.

Стенка лимфангионов имеет развитую иннервацию, которая в основном представлена адренергическими волокнами. Роль нервных волокон в стенке лимфангиона заключается не в побуждении их к сокращению, а в модуляции параметров спонтанно возникающих ритмических сокращений. Кроме этого, при общем возбуждении симпатико-адреналовой системы могут происходить тонические со­кращения гладких мышц лимфангионов, что приводит к повышению давления во всей системе лимфатических сосудов и быстрому по­ступлению в кровоток значительного количества лимфы. Гладкие мышечные клетки высокочувствительны к некоторым гормонам и биологически активным веществам. В частности, гистамин, увели­чивающий проницаемость кровеносных капилляров и приводящий тем самым к росту лимфообразования, увеличивает частоту и ам­плитуду сокращений гладких мышц лимфангионов. Миоциты лимф­ангиона реагируют также на изменения концентрации метаболитов, рО2 и повышение температуры.

В организме, помимо основного механизма, транспорту лимфы по сосудам способствует ряд второстепенных факторов. Во время вдоха усиливается отток лимфы из грудного протока в венозную систему, а при вдохе он уменьшается. Движения диафрагмы влияют на ток лимфы — периодическое сдавление и растяжение диафрагмой цистерны грудного протока усиливает заполнение ее лимфой и способствует продвижению по грудному лимфатическому протоку. Повышение активности периодически сокращающихся мышечных органов (сердце, кишечник, скелетная мускулатура) влияет не толь­ко на усиление лимфооттока, но и способствует переходу тканевой жидкости в капилляры. Сокращения мышц, окружающих лимфа­тические сосуды, повышают внутрилимфатическое давление и вы­давливают лимфу в направлении, определяемом клапанами. При иммобилизации конечности отток лимфы ослабевает, а при активных и пассивных ее движениях — увеличивается. Ритмическое растя­жение и массаж скелетных мышц способствуют не только механи­ческому перемещению лимфы, но и усиливают собственную сокра­тительную активность лимфангионов в этих мышцах.

7.3.5. Функции лимфатической системы

Наиболее важной функцией лимфатической системы является возврат белков, электролитов и воды из интерстициального про­странства в кровь. За сутки в составе лимфы в кровоток возвращается более 100 г белка, профильтровавшегося из кровеносных капилляров в интерстициальное пространство. Нормальная лимфоциркуляция необходима для формирования максимально концентрированной мо­чи в почке. Через лимфатическую систему переносятся многие продукты, всасывающиеся в желудочно-кишечном тракте, и прежде всего жиры. Некоторые крупномолекулярные ферменты, такие как гистаминаза и липаза, поступают в кровь исключительно по системе лимфатических сосудов. Лимфатическая система действует как транспортная система по удалению эритроцитов, оставшихся в ткани после кровотечения, а также по удалению и обезвреживанию бак­терий, попавших в ткани. Лимфатическая система продуцирует и осуществляет перенос лимфоцитов и других важнейших факторов иммунитета. При возникновении инфекции в каких-либо частях тела региональные лимфатические узлы воспаляются в результате задержки в них бактерий или токсинов. В синусах лимфатических узлов, расположенных в корковом и мозговом слоях, содержится эффективная фильтрационная система, которая позволяет практи­чески стерилизовать поступающую в лимфатические узлы инфици­рованную лимфу.

В клинической лимфологии применяют различные способы вве­дения лекарственных препаратов непосредственно в лимфатическую систему. Эндолимфотерапию применяют при лечении тяжелых вос­палительных процессов, а также раковых заболеваний. В последние годы появился новый способ лечения — лимфотропная терапия. При лимфотропной терапии лекарственные препараты поступают в лимфатическую систему при их внутримышечном или подкожном введении.

Hosted by uCoz