Глава 15. ИНТЕГРАТИВНАЯ ДЕЯТЕЛЬНОСТЬ МОЗГА ЧЕЛОВЕКА

15.1. УСЛОВНОРЕФЛЕКТОРНАЯ ОСНОВА ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ

Кора большого мозга и ближайшие к ней подкорковые структуры являются высшим отделом ЦНС человека и животных. Основная функция этого отдела — осуществление сложных поведенческих реакций организма (поведения), составляющих основу высшей нервной деятельности.

15.1.1. Условный рефлекс. Механизм образования

Одним из основных элементарных актов высшей нервной деятельности является условный рефлекс. Биологическое значение условных рефлексов заключается в резком расширении числа сигнальных, значимых для организма раздражителей, что обеспечивает несравненно более высокий уровень адаптивного (приспособительного) поведения.

Условно-рефлекторный механизм лежит в основе формирования любого приобретенного навыка, в основе процесса обучения. Структурно-функциональной базой условного рефлекса служат кора и подкорковые образования мозга.

Сущность условно-рефлекторной деятельности организма сводится к превращению индифферентного раздражителя в сигнальный, значащий, благодаря многократному подкреплению раздражения безусловным стимулом. Благодаря подкреплению условного стимула безусловным ранее индифферентный раздражитель ассоциируется в жизни организма с биологически важным событием и тем самым сигнализирует о наступлении этого события. При этом в качестве эффекторного звена рефлекторной дуги условного рефлекса может выступать любой иннервируемый орган. В организме человека и животных нет органа, работа которого не могла бы измениться под влиянием условного рефлекса. Любая функция организма в целом или отдельных его физиологических систем может быть модифицирована (усилена или подавлена) в результате формирования соответствующего условного рефлекса.

Физиологический механизм, лежащий в основе условного рефлекса, схематически представлен на рис. 15.1. В зоне коркового представительства условного стимула и коркового (или подкоркового)

Рис. 15.1. Образование условного рефлекса (схема).

I, II — очаги возбуждения а коре большого мозга; 1 — афферентные пути условного сигнала; 2 — рецепторы полости рта; 3 — эфферентные пути; 4 — центр в продолговатом мозге; 5 — слюнная железа; 6, 7 — афферентные пути безусловного сигнала; 8 — чувствительные нейроны; 9 — вставочные нейроны.

представительства безусловного стимула формируются два очага возбуждения. Очаг возбуждения, вызванный безусловным стимулом внешней или внутренней среды организма, как более сильный (доминантный) притягивает к себе возбуждение из очага более слабого возбуждения, вызванного условным стимулом. После нескольких повторных предъявлений условного и безусловного раздражителей между этими двумя зонами «проторяется» устойчивый путь движения возбуждения: от очага, вызванного условным стимулом, к очагу, вызванному безусловным стимулом. В результате изолированное предъявление только условного стимула теперь приводит к реакции, вызываемой ранее безусловным стимулом.

В качестве главных клеточных элементов центрального механизма образования условного рефлекса выступают вставочные и ассоциативные нейроны коры большого мозга.

Для образования условного рефлекса необходимо соблюдение следующих правил: 1) индифферентный раздражитель (который должен стать условным, сигнальным) должен иметь достаточную силу для возбуждения определенных рецепторов; 2) необходимо, чтобы индифферентный раздражитель подкреплялся безусловным стимулом, причем индифферентный раздражитель должен либо несколько предшествовать, либо предъявляться одновременно с безусловным; 3) необходимо, чтобы раздражитель, используемый в качестве условного, был слабее безусловного. Для выработки условного рефлекса необходимо также нормальное физиологическое состояние корковых и подкорковых структур, образующих центральное представительство соответствующего условного и безусловного стимулов, отсутствие сильных посторонних раздражителей, отсутствие значительных патологических процессов в организме.

При соблюдении указанных условий практически на любой стимул можно выработать условный рефлекс.

И. П. Павлов — автор учения об условных рефлексах как основе высшей нервной деятельности первоначально предполагал, что условный рефлекс образуется на уровне кора — подкорковые образования (временная связь замыкается между корковыми нейронами в зоне представительства индифферентного условного стимула и подкорковыми нервными клетками, составляющими центральное представительство безусловного раздражителя). В более поздних работах И. П. Павлов образование условно-рефлекторной связи объяснял образованием связи на уровне корковых зон представительства условного и безусловного стимулов.

Последующие нейрофизиологические исследования привели к разработке, экспериментальному и теоретическому обоснованию нескольких различных гипотез об образовании условного рефлекса (рис. 15.2). Данные современной нейрофизиологии указывают на возможность разных уровней замыкания, формирования условно-рефлекторной связи (кора — кора, кора — подкорковые образования, подкорковые образования — подкорковые образования) при доминирующей роли в этом процессе корковых структур. Очевидно, физиологический механизм образования условного рефлекса представляет собой сложную динамическую организацию корковых и подкорковых структур мозга (Л. Г. Воронин, Э. А. Асратян, П. К. Анохин, А. Б. Коган).

Несмотря на определенные индивидуальные различия, условные рефлексы характеризуются следующими общими свойствами (признаками):

1. Все условные рефлексы представляют собой одну из форм приспособительных реакций организма к меняющимся условиям среды.

2. Условные рефлексы относятся к категории приобретаемых в ходе индивидуальной жизни рефлекторных реакций и отличаются индивидуальной специфичностью.

3. Все виды условно-рефлекторной деятельности носят сигнальный предупредительный характер.

4. Условно-рефлекторные реакции образуются на базе безусловных рефлексов; без подкрепления условные рефлексы со временем ослабляются, подавляются.

Рис. 15.2. Образование условного рефлекса (схема) по И. П. Павлову (А) и Э. А. Асратяну (Б).

К — кора; ЗЦ — зрительный центр; СЖ — слюнная железа; КП — корковое представительство пищевого центра; Г — глаз; М — мышца; Я — язык; Ц — подкорковый центр; 1 — временная связь между зрительным и слюноотделительным рефлексами через серое вещество коры большого мозга; 2 — через ассоциативные пути белого вещества, 3 — через подкорковые центры.

15.1.2. Методы изучения условных рефлексов

Классические исследования условно-рефлекторной деятельности организма, заложившие основу учения И. П. Павлова о высшей нервной деятельности, были проведены с использованием рефлексов слюноотделения (эффекторное звено рефлекторной дуги — слюнные железы). Методика достаточно простая и сводится к следующей схеме. Для выработки положительного (или отрицательного) пищевого условного рефлекса животному предъявляют индифферентный по отношению к безусловному рефлексу слюноотделения стимул (например, световой или звуковой раздражитель) с последующим или одновременным подкреплением его безусловным раздражителем (пища). Для сбора слюны у животного предварительно производят операцию выведения протока слюнной железы (околоушной, подъязычной или подчелюстной) на наружную поверхность кожи. Характеристики как безусловного, так и вырабатываемого на его основе условного рефлекса изучают путем анализа качественного или количественного состава выделяемой слюны.

При выработке оборонительного условного рефлекса (например, на болевое раздражение) в качестве подкрепляющего безусловного рефлекса в этой схеме используют электрическое раздражение кожи.

Впоследствии при изучении условно-рефлекторной деятельности животных и человека стали широко применять и другие методики, например двигательные условные рефлексы. В этом случае эффекторное звено рефлекторной дуги образовано мышцами, определяющими, обеспечивающими те или иные двигательные акты.

При анализе нейрофизиологического механизма образования и реализации условно-рефлекторной деятельности наряду с изучением слюноотделительных и двигательных показателей рефлекторной реакции в настоящее время широко используют методы регистрации электрофизиологических, биохимических, морфологических (цито- и гистологических) показателей функционирования нервной системы; изучают вегетативные и поведенческие компоненты сложных условно-рефлекторных актов животного и человеческого организма.

15.1.3. Стадии образования условного рефлекса

В формировании, укреплении условного рефлекса различают две стадии: начальную (генерализация условного возбуждения) и конечную — стадию упроченного условного рефлекса (концентрация условного возбуждения).

Начальная стадия генерализованного условного возбуждения в сущности является продолжением более общей универсальной реакции организма на любой новый для него раздражитель, представленной безусловным ориентировочным рефлексом. Ориентировочный рефлекс — это генерализованная многокомпонентная сложная реакция организма на достаточно сильный внешний раздражитель, охватывающая многие его физиологические системы, включая и вегетативные. Биологическое значение ориентировочного рефлекса заключается в мобилизации функциональных систем организма для лучшего восприятия раздражителя, т. е. ориентировочный рефлекс носит адаптивный (приспособительный) характер. Внешне ориентировочная реакция, названная И. П. Павловым рефлексом «что такое?», проявляется у животного в настораживании, прислушивании, обнюхивании, повороте глаз и головы в сторону стимула. Такая реакция — результат широкого распространения возбудительного процесса из очага начального возбуждения, вызванного действующим агентом, на окружающие центральные нервные структуры. Ориентировочный рефлекс в отличие от других безусловных рефлексов быстро угнетается, подавляется при повторных применениях стимула.

Начальная стадия образования условного рефлекса состоит в формировании временной связи не только на данный конкретный условный раздражитель, но и на все родственные ему по характеру стимулы. Нейрофизиологический механизм заключается в иррадиации возбуждения из центра проекции условного раздражителя на нервные клетки окружающих проекционных зон, близких в функциональном отношении клеткам центрального представительства условного раздражителя, на который образуется условный рефлекс. Чем дальше от начального исходного очага, вызванного основным стимулом, подкрепляемым безусловным стимулом, находится зона, охваченная иррадиацией возбуждения, тем меньше вероятность активации этой зоны. Следовательно, на начальной стадии генерализации условного возбуждения, характеризуемой обобщенной генерализованной реакцией, условно-рефлекторный ответ наблюдается на сходные, близкие по смыслу стимулы как результат распространения возбуждения из проекционной зоны основного условного стимула.

По мере укрепления условного рефлекса процессы иррадиации возбуждения сменяются процессами концентрации, ограничивающими очаг возбуждения только зоной представительства основного стимула. В результате наступает уточнение, специализация условного рефлекса. На конечной стадии упроченного условного рефлекса происходит концентрация условного возбуждения: условно-рефлекторная реакция наблюдается лишь на заданный стимул, на побочные близкие по смыслу раздражители — прекращается. На стадии концентрации условного возбуждения происходит локализация возбудительного процесса только в зоне центрального представительства условного стимула (реализуется реакция лишь на основной стимул), сопровождаемая торможением реакции на побочные стимулы. Внешним проявлением этой стадии является дифференцирование параметров действующего условного стимула — специализация условного рефлекса.

15.1.4. Виды условных рефлексов

По отношению условного раздражителя к сигнализируемой им реакции различают натуральные и искусственные условные рефлексы.

Натуральными называют условные рефлексы, которые образуются на раздражители, являющиеся естественными, обязательно сопутствующими признаками, свойствами безусловного стимула, на базе которого они вырабатываются (например, запах мяса при кормлении им). Натуральные условные рефлексы по сравнению с искусственными отличаются большей легкостью образования и большей прочностью.

Искусственными называют условные рефлексы, образующиеся на стимулы, которые обычно не имеют прямого отношения к подкрепляющему их безусловному стимулу (например, световой раздражитель, подкрепляемый пищей).

В зависимости от природы рецепторных структур, на которые действуют условные стимулы, различают экстероцептивные, интероцептивные и проприоцептивные условные рефлексы.

Экстероцептивные условные рефлексы, образуемые на стимулы, воспринимаемые наружными внешними рецепторами тела, составляют основную массу условнорефлекторных реакций, обеспечивающих адаптивное (приспособительное) поведение животных и человека в условиях изменяющейся внешней среды.

Интероцептивные условные рефлексы, вырабатываемые на физические и химические раздражения интерорецепторов, обеспечивают физиологические процессы гомеостатической регуляции функции внутренних органов.

Проприоцептивные условные рефлексы, формируемые на раздражение собственных рецепторов поперечнополосатой мускулатуры туловища и конечностей, составляют основу всех двигательных навыков животных и человека.

В зависимости от структуры применяемого условного стимула различают простые и сложные (комплексные) условные рефлексы.

В случае простого условного рефлекса в качестве условного стимула используется простой раздражитель (свет, звук и т. д.). В реальных условиях функционирования организма в качестве условных сигналов выступают, как правило, не отдельные, одиночные раздражители, а их временные и пространственные комплексы.

В этом случае в качестве условного стимула выступает либо вся окружающая животное обстановка, либо части ее в виде комплекса сигналов.

Одной из разновидностей такого комплексного условного рефлекса является стереотипный условный рефлекс, образуемый на определенный временной или пространственный «узор», комплекс стимулов.

Различают также условные рефлексы, вырабатываемые на одновременные и последовательные комплексы стимулов, на последовательную цепь условных раздражителей, разделенных определенным временным промежутком.

Следовые условные рефлексы формируются в том случае, когда безусловный подкрепляющий раздражитель предъявляется лишь после окончания действия условного стимула.

Наконец, различают условные рефлексы первого, второго, третьего и т. д. порядка. Если условный стимул (свет) подкрепляется безусловным (пища), образуется условный рефлекс первого порядка. Условный рефлекс второго порядка образуется, если условный стимул (например, свет) подкрепляется не безусловным, а условным раздражителем, на который ранее был образован условный рефлекс. Условные рефлексы второго и более сложного порядка образуются труднее и отличаются меньшей прочностью.

К условным рефлексам второго и более высокого порядка относятся условные рефлексы, вырабатываемые на словесный сигнал (слово представляет здесь сигнал, на который ранее был образован условный рефлекс при подкреплении его безусловным стимулом).

15.1.5. Торможение условных рефлексов

Функционирование условно-рефлекторного механизма базируется на двух основных нервных процессах: возбуждения и торможения. При этом по мере становления, упрочения условного рефлекса возрастает роль тормозного процесса.

В зависимости от природы физиологического механизма, лежащего в основе тормозного эффекта на условно-рефлекторную деятельность организма, различают безусловное (внешнее и запредельное) и условное (внутреннее) торможение условных рефлексов.

Внешнее торможение условного рефлекса возникает под действием другого постороннего условного или безусловного раздражителя. При этом основная причина подавления условного рефлекса не. зависит от самого тормозимого рефлекса и не требует специальной выработки. Внешнее торможение наступает при первом предъявлении соответствующего сигнала.

Запредельное торможение условного рефлекса развивается либо при чрезмерно большой силе стимула, либо при низком функциональном состоянии центральной нервной системы, на уровне которого обычные пороговые раздражители приобретают характер чрезмерных, сильных. Запредельное торможение имеет охранительное значение.

Биологический смысл безусловного внешнего торможения условных рефлексов сводится к обеспечению реакции на главный, наиболее важный для организма в данный момент времени, стимул при одновременном угнетении, подавлении реакции на второстепенный стимул, в качестве которого в этом случае выступает условный стимул.

Условное (внутреннее) торможение условного рефлекса носит условный характер и требует специальной выработки. Поскольку развитие тормозного эффекта связано с нейрофизиологическим механизмом образования условного рефлекса, такое торможение относится к категории внутреннего торможения, а проявление этого типа торможения связано с определенными условиями (например, повторное применение условного стимула без подкрепления), такое торможение является и условным.

Биологический смысл внутреннего торможения условных рефлексов состоит в том, что изменившиеся условия внешней среды (прекращение подкрепления условного стимула безусловным) требует соответствующего адаптивного приспособительного изменения в условно-рефлекторном поведении. Условный рефлекс угнетается, подавляется, поскольку перестает быть сигналом, предвещающим появление безусловного стимула.

Различают четыре вида внутреннего торможения: угасание, дифференцировка, условный тормоз, запаздывание.

Если условный раздражитель предъявляется без подкрепления безусловным, то через некоторое время после изолированного применения условного стимула реакция на него угасает. Такое торможение условного рефлекса называется угасательным (угасание). Угасание условного рефлекса — это временное торможение, угнетение рефлекторной реакции. Оно не означает уничтожение, исчезновение данной рефлекторной реакции. Спустя некоторое время новое предъявление условного стимула без подкрепления его безусловным вначале вновь приводит к проявлению условно-рефлекторной реакции.

Если у животного или человека с выработанным условным рефлексом на определенную частоту звукового стимула (например, звук метронома с частотой 50 в секунду) близкие по смыслу раздражители (звук метронома с частотой 45 или 55 в секунду) не подкреплять безусловным стимулом, то условно-рефлекторная реакция на последние угнетается, подавляется (первоначально условная реакция наблюдается и на эти частоты звукового раздражения). Такой вид внутреннего (условного) торможения называют дифференцировочным торможением (дифференцировка). Дифференцировочное торможение лежит в основе многих форм обучения, связанных с выработкой тонких навыков.

Если условный стимул, на который образован условный рефлекс, применяется в комбинации с некоторым другим стимулом и их комбинация не подкрепляется безусловным стимулом, наступает торможение условного рефлекса, вызываемого этим стимулом. Этот вид условного торможения называется условным тормозом.

Запаздывательное торможение наступает тогда, когда подкрепление условного сигнала безусловным раздражителем осуществляется с большим опозданием (2—3 мин) по отношению к моменту предъявления условного раздражителя.

15.1.6. Динамика основных нервных процессов

Основные нервные процессы (возбуждение и торможение) в ЦНС обладают способностью одновременно или последовательно влиять на функциональное состояние соседних окружающих зон. Это влияние проявляется в усилении или ослаблении выработанных условных рефлексов.

Одна из характерных особенностей процесса возбуждения — свойство его распространения, вовлечения в этот процесс новых зон, областей коры мозга. Распространение нервного процесса из центрального очага на окружающую зону называется иррадиацией возбуждения. Противоположный процесс — ограничение, сокращение зоны очага возбуждения называется концентрацией процесса возбуждения. Процессы иррадиации и концентрации нервных процессов составляют основу индукционных отношений в центральной нервной системе.

Индукцией называется свойство основного нервного процесса (возбуждения и торможения) вызывать вокруг себя и после себя противоположный эффект. Если предъявлять положительный условный сигнал сразу после действия дифференцировочного раздражителя, вызывающего в зоне центрального представительства условного стимула тормозное состояние — дифференцировочное торможение, то наступит усиление условного рефлекса. Это означает, что тормозной процесс, развивающийся в результате действия дифференцировочного раздражителя, вызывает вокруг себя и после себя состояние повышенной возбудимости — индукционный эффект. По характеру влияния различают положительную и отрицательную индукцию, по времени — одновременную и последовательную индукцию.

Положительная индукция наблюдается в том случае, когда очаг тормозного процесса сразу или после прекращения тормозящего стимула создает в окружающей его зоне-область повышенной возбудимости.

Отрицательная индукция имеет место, когда очаг возбуждения создает вокруг себя и после себя состояние пониженной возбудимости. Функциональная роль отрицательной индукции заключается в том, что она обеспечивает процесс концентрации условного возбуждения, исключение побочных реакций на другие возможные раздражения.

Если очаг центрального возбуждения сменяется в следующий момент времени (после прекращения вызывающего это возбуждение стимула) торможением этой же зоны, то следует говорить о феномене положительной последовательной индукции.

Как правило, скорость процессов иррадиации и концентрации возбудительного процесса в 2—3 раза больше, чем скорость тормозного процесса.

В различных отделах головного мозга, ответственных за разные формы проявления высшей нервной деятельности, в частности за образование и осуществление условных рефлексов, формируется сложная пространственно-временная мозаика процессов центрального возбуждения и торможения, обусловленная их движением и взаимодействием.

15.1.7. Типы высшей нервной деятельности

Представление о типологических особенностях нервной системы человека и животных является одним из определяющих в павловском учении о высшей нервной деятельности. Соотношение силы, уравновешенности и подвижности основных нервных процессов определяет типологию высшей нервной деятельности индивида. Систематизация типов высшей нервной деятельности основана на оценке трех основных особенностей процессов возбуждения и торможения: силы, уравновешенности и подвижности, выступающих как результат унаследованных и приобретенных индивидуальных качеств нервной системы. Тип как совокупность врожденных и приобретенных свойств нервной системы, определяющих характер взаимодействия организма и среды, проявляется в особенностях функционирования физиологических систем организма и прежде всего самой нервной системы, ее высших «этажей», обеспечивающих высшую нервную деятельность.

Типы высшей нервной деятельности формируются на основе как генотипа, так и фенотипа. Генотип формируется в процессе эволюции под влиянием естественного отбора, обеспечивая развитие наиболее приспособленных к окружающей среде индивидов. Под влиянием реально действующих на протяжении индивидуальной жизни условий внешней среды генотип формирует фенотип организма.

Современные представления о типах высшей нервной деятельности в значительной степени могут отождествляться с четырьмя типами человеческого темперамента (холерический, меланхолический, флегматический, сангвинический), выделенными еще древнегреческим врачом Гиппократом (IV в. до нашей эры) на основе наблюдения за поведением людей. Сложная комбинация передаваемых по наследству особенностей в сочетании с большим разнообразием индивидуально приобретенного поведения (в тесной связи с расовыми, национальными, климатическими, социально-культурными условиями жизни современного человека) позволяет лишь в самых общих чертах идентифицировать определенный тип высшей нервной деятельности.

В условно-рефлекторной деятельности сила процесса возбуждения определяется скоростью и прочностью выработки условных рефлексов, сила процесса торможения находит отражение в скорости и прочности выработки дифференцировочного и запаздывающего торможения. Лабильность, подвижность нервных процессов оцениваются в показателях прочности переделки сигнального значения условных раздражителей (с возбудительного на тормозной и наоборот).

Комбинация этих параметров центрального возбуждения и торможения образует следующие четыре типа высшей нервной деятельности (схема 15.1).

Сангвинический тип характеризуется достаточной силой и подвижностью возбудительного и тормозного процессов (сильный, уравновешенный, подвижный).

Схема 15.1. Основные типы высшей нервной деятельности

Флегматический тип отличается достаточной силой обоих нервных процессов при относительно низких показателях их подвижности, лабильности (сильный, уравновешенный, инертный).

Холерический тип характеризуется высокой силой возбудительного процесса с явным преобладанием его над тормозным и повышенной подвижностью, лабильностью основных нервных процессов (сильный, неуравновешенный, безудержный).

Меланхолический тип характеризуется явным преобладанием тормозного процесса над возбудительным и их низкой подвижностью (слабый, неуравновешенный, инертный).

Необходимо иметь в виду, что отмеченные выше типы высшей нервной деятельности представляют собой крайние классические типы, которые в чистом виде либо вообще не встречаются, либо встречаются крайне редко.

Существенные различия в типологии человека (в отличие даже от высших животных) обусловлены наличием у него второй сигнальной системы, его мыслительной творческой деятельностью. На это обстоятельство обратил внимание еще И. П. Павлов, который предложил применительно к человеку различать два типа: художественный и мыслительный. Для художественного типа характерно образное мышление; познавательные процессы и творческая деятельность преимущественно ориентированы на яркие художественные образы; в общем поведении человека преобладают стимулы первой сигнальной системы, вызывающие в мозге их яркие образы. Напротив, у мыслительного типа процессы познания, мышление преимущественно оперируют абстрактными понятиями, определяющими в индивидуальном поведении становятся сигналы сигналов — стимулы второй сигнальной системы. Естественно, это два крайних значения в типологии человека; обычно в индивидуальной типологии человека можно лишь говорить о предрасположенности, большей или меньшей выраженности одного из отмеченных типов высшей нервной деятельности.

15.2. ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПАМЯТИ

В формировании и осуществлении высших функций мозга очень важное значение имеет общебиологическое свойство фиксации, хранения и воспроизведения информации, объединяемое понятием память. Память как основа процессов обучения и мышления включает в себя четыре тесно связанных между собой процесса: запоминание, хранение, узнавание, воспроизведение. На протяжении жизни человека его память становится вместилищем огромного количества информации: в течение 60 лет активной творческой деятельности человек способен воспринять 1013— 10 бит информации, из которой реально используется не более 5—10 %. Это указывает на значительную избыточность памяти и важное значение не только процессов памяти, но и процесса забывания. Не все, что воспринимается, переживается или делается человеком, сохраняется в памяти, значительная часть воспринятой информации со временем забывается. Забывание проявляется в невозможности узнать, припомнить что-либо или в виде ошибочного узнавания, припоминания. Причиной забывания могут стать разные факторы, связанные как с самим материалом, его восприятием, так и с отрицательными влияниями других раздражителей, действующих непосредственно вслед за заучиванием (феномен ретроактивного торможения, угнетения памяти). Процесс забывания в значительной мере зависит от биологического значения воспринимаемой информации, вида и характера памяти. Забывание в ряде случаев может носить положительный характер, например память на отрицательные сигналы, неприятные события. В этом справедливость мудрого восточного изречения: «Счастью память отрада, горю забвение друг».

В результате процесса научения возникают физические, химические и морфологические изменения в нервных структурах, которые сохраняются некоторое время и оказывают существенное влияние на осуществляемые организмом рефлекторные реакции. Совокупность таких структурно-функциональных изменений в нервных образованиях, известная под названием «энграмма» (след) действующих раздражителей становится важным фактором, определяющим все разнообразие приспособительного адаптивного поведения организма.

Виды памяти классифицируют по форме проявления (образная, эмоциональная, логическая, или словесно-логическая), по временной характеристике, или продолжительности (мгновенная, кратковременная, долговременная).

Образная память проявляется формированием, хранением и воспроизведением ранее воспринятого образа реального сигнала, его нервной модели. Под эмоциональной памятью понимают воспроизведение некоторого пережитого ранее эмоционального состояния при повторном предъявлении сигнала, вызвавшем первичное возникновение такого эмоционального состояния. Эмоциональная память характеризуется высокой скоростью и прочностью. В этом, очевидно, главная причина более легкого и устойчивого запоминания человеком эмоционально окрашенных сигналов, раздражителей. Напротив, серая, скучная информация запоминается намного труднее и быстро стирается в памяти. Логическая (словесно-логическая, семантическая) память — память на словесные сигналы, обозначающие как внешние объекты и события, так и вызванные ими ощущения и представления.

Мгновенная (иконическая) память заключается в образовании мгновенного отпечатка, следа действующего стимула в рецепторной структуре. Этот отпечаток, или соответствующая физико-химическая энграмма внешнего стимула, отличается высокой информативностью, полнотой признаков, свойств (отсюда и название «иконическая память», т. е. четко проработанное в деталях отражение) действующего сигнала, но и высокой скоростью угасания (хранится не более 100—150 мс, если не подкрепляется, не усиливается повторным или продолжающимся стимулом).

Рис. 15.3. Циркуляция возбуждения по цепочке нейронов (1—4) и по одному (3, 5) нейрону; РП — рецептивное поле

Нейрофизиологический механизм иконической памяти, очевидно, заключается в процессах рецепции действующего стимула и ближайшего последействия (когда реальный стимул уже не действует), выражаемого в следовых потенциалах, формирующихся на базе рецепторного электрического потенциала. Продолжительность и выраженность этих следовых потенциалов определяется как силой действующего стимула, так и функциональным состоянием, чувствительностью и лабильностью воспринимающих мембран рецепторных структур. Стирание следа памяти происходит за 100—150 мс.

Биологическое значение иконической памяти заключается в обеспечении анализаторных структур мозга возможностью выделения отдельных признаков и свойств сенсорного сигнала, распознавания образа. Иконическая память хранит в себе не только информацию, необходимую для четкого представления о сенсорных сигналах, поступающих в течение долей секунды, но и содержит несравненно больший объем информации, чем может быть использовано и реально используется на последующих этапах восприятия, фиксации и воспроизведения сигналов.

При достаточной силе действующего стимула иконическая память переходит в категорию краткосрочной (кратковременной) памяти. Кратковременная память — оперативная память, обеспечивающая выполнение текущих поведенческих и мыслительных операций. В основе кратковременной памяти лежит повторная многократная циркуляция импульсных разрядов по круговым замкнутым цепям нервных клеток (рис. 15.3) (Лоренте де Но, И. С. Беритов). Кольцевые структуры могут быть образованы и в пределах одного и того же нейрона путем возвратных сигналов, образуемых концевыми (или боковыми, латеральными) разветвлениями аксонного отростка на дендритах этого же нейрона (И. С. Беритов). В результате многократного прохождения импульсов по этим кольцевым структурам в последних постепенно образуются стойкие изменения, закладывающие основу последующего формирования долгосрочной памяти. В этих кольцевых структурах могут участвовать не только возбуждающие, но и тормозящие нейроны. Продолжительность кратковременной памяти составляет секунды, минуты после непосредственного действия соответствующего сообщения, явления, предмета. Реверберационная гипотеза природы кратковременной памяти допускает наличие замкнутых кругов циркуляции импульсного возбуждения как внутри коры большого мозга, так и между корой и подкорковыми образованиями (в частности, таламокортикальные нервные круги), содержащими как сенсорные, так и гностические (обучаемые, распознающие) нервные клетки. Внутрикорковые и таламокортикальные реверберационные круги как структурная основа нейрофизиологического механизма краткосрочной памяти образованы корковыми пирамидными клетками V—VI слоев преимущественно лобных и теменных областей коры большого мозга.

Участие структур гиппокампа и лимбической системы мозга в краткосрочной памяти связано с реализацией этими нервными образованиями функции различения новизны сигналов и считывания поступающей афферентной информации на входе бодрствующего мозга (О. С. Виноградова). Реализация феномена краткосрочной памяти практически не требует и реально не связана с существенными химическими и структурными изменениями в нейронах и синапсах, так как для соответствующих изменений в синтезе матричных (информационных) РНК требуется большее время.

Несмотря на различия гипотез и теорий о природе краткосрочной памяти, исходной их предпосылкой является возникновение непродолжительных обратимых изменений физико-химических свойств мембраны, а также динамики медиаторов в синапсах. Ионные токи через мембрану в сочетании с кратковременными метаболическими сдвигами во время активации синапсов могут привести к изменению эффективности синаптической передачи, длящейся несколько секунд.

Превращение краткосрочной памяти в долговременную (консолидация памяти) в общем виде обусловлено наступлением стойких изменений синаптической проводимости как результат повторного возбуждения нервных клеток (обучающиеся популяции, ансамбли нейронов по Хеббу). Переход кратковременной памяти в долгосрочную (консолидация памяти) обусловлен химическими и структурными изменениями в соответствующих нервных образованиях. По данным современной нейрофизиологии и нейрохимии, в основе долговременной (долгосрочной) памяти лежат сложные химические процессы синтеза белковых молекул в клетках головного мозга. В основе консолидации памяти много факторов, приводящих к облегчению передачи импульсов по синаптическим структурам (усиленное функционирование определенных синапсов, повышение их проводимости для адекватных импульсных потоков). Одним из таких факторов может служить известный феномен посттетанической потенциации (см. главу 4), поддерживаемый реверберирующими потоками импульсов: раздражение афферентных нервных структур приводит к достаточно длительному (десятки минут) повышению проводимости мотонейронов спинного мозга. Это означает, что возникающие при стойком сдвиге мембранного потенциала физико-химические изменения постсинаптических мембран, вероятно, служат основой для образования следов памяти, отражающихся в изменении белкового субстрата нервной клетки.

Определенное значение в механизмах долгосрочной памяти имеют и изменения, наблюдающиеся в медиаторных механизмах, обеспечивающих процесс химической передачи возбуждения с одной нервной клетки на другую. В основе пластических химических изменений в синаптических структурах лежит взаимодействие медиаторов, например ацетилхолина с рецепторными белками постсинаптической мембраны и ионами (Na+, K+, Са2+). Динамика трансмембранных токов этих ионов делает мембрану более чувствительной к действию медиаторов. Установлено, что процесс обучения сопровождается повышением активности фермента холинэстеразы, разрушающей ацетилхолин, а вещества, подавляющие действие холинэстеразы, вызывают существенные нарушения памяти.

Одной из распространенных химических теорий памяти является гипотеза Хидена о белковой природе памяти. По мнению автора, информация, лежащая в основе долговременной памяти, кодируется, записывается в структуре полинуклеотидной цепи молекулы. Разная структура импульсных потенциалов, в которых закодирована определенная сенсорная информация в афферентных нервных проводниках, приводит к разной перестройке молекулы РНК, к специфическим для каждого сигнала перемещениям нуклеотидов в их цепи. Таким образом происходит фиксация каждого сигнала в виде специфического отпечатка в структуре молекулы РНК. Исходя из гипотезы Хидена, можно предположить, что глиальные клетки, принимающие участие в трофическом обеспечении функций нейрона, включаются в метаболический цикл кодирования поступающих сигналов путем изменения нуклеотидного состава синтезирующих РНК. Весь набор вероятных перестановок и комбинаций нуклеотидных элементов обеспечивает возможность фиксировать в структуре молекулы РНК огромный объем информации: теоретически рассчитанный объем этой информации составляет 10 —1020 бит, что значительно перекрывает реальный объем человеческой памяти. Процесс фиксации информации в нервной клетке находит отражение в синтезе белка, в молекулу которого вводится соответствующий следовой отпечаток изменений в молекуле РНК. При этом молекула белка становится чувствительной к специфическому узору импульсного потока, тем самым она как бы узнает тот афферентный сигнал, который закодирован в этом импульсном паттерне. В результате происходит освобождение медиатора в соответствующем синапсе, приводящее к передаче информации с одной нервной клетки на другую в системе нейронов, ответственных за фиксацию, хранение и воспроизведение информации.

Возможным субстратом долговременной памяти являются некоторые пептиды гормональной природы, простые белковые вещества, специфический белок S-100. К таким пептидам, стимулирующим, например, условно-рефлекторный механизм обучения, относятся некоторые гормоны (АКТГ, соматотропный гормон, вазопрессин и др.).

Рис. 15.4. Иммунохимический механизм формирования памяти (по И. П. Ашмарину; схема).

КБ — катионные белки, открывающие путь комплексам фрагментов синаптического антигена с РНК через оболочку клетки; Л — клетка глии (аналог лимфоцитов); М — клетка глии (аналог макрофагов); 1, 2, 3 — участки синаптического антигена (зона синтеза заштрихована) ; 4 — комплекс фрагмента синаптического антигена с РНК; 5 — антитела для синапсов. Тонкими линиями изображены мРНК, толстыми — ДНК хромосом.

Интересная гипотеза об иммунохимическом механизме формирования памяти предложена И. П. Ашмариным. Гипотеза основана на признании важной роли активной иммунной реакции в консолидации, формировании долгосрочной памяти. Суть этого представления состоит в следующем: в результате метаболических процессов на синаптических мембранах при реверберации возбуждения на стадии формирования кратковременной памяти образуются вещества, играющие роль антигена для антител, вырабатываемых в глиальных клетках. Связывание антитела с антигеном происходит при участии стимуляторов образования медиаторов или ингибитора ферментов, разрушающих, расщепляющих эти стимулирующие вещества (рис. 15.4).

Значительное место в обеспечении нейрофизиологических механизмов долговременной памяти отводится глиальным клеткам (Галамбус, А. И. Ройтбак), число которых в центральных нервных образованиях на порядок превышает число нервных клеток. Предполагается следующий механизм участия глиальных клеток в осуществлении условно-рефлекторного механизма научения. На стадии образования и упрочения условного рефлекса в прилегающих к нервной клетке глиальных клетках усиливается синтез миелина, который окутывает концевые тонкие разветвления аксонного отростка и тем самым облегчает проведение по ним нервных импульсов, в результате чего повышается эффективность синаптической передачи возбуждения. В свою очередь стимуляция образования миелина происходит в результате деполяризации мембраны олигодендроцита (глиальной клетки) под влиянием поступающего нервного импульса. Таким образом, в основе долговременной памяти могут лежать сопряженные изменения в нервно-глиальном комплексе центральных нервных образований.

Возможность избирательного выключения кратковременной памяти без нарушения долговременной и избирательного воздействия на долговременную память в отсутствие каких-либо нарушений краткосрочной памяти обычно рассматривается как свидетельство разной природы лежащих в их основе нейрофизиологических механизмов. Косвенным доказательством наличия определенных различий в механизмах кратковременной и долговременной памяти являются особенности расстройств памяти при повреждении структур мозга. Так, при некоторых очаговых поражениях мозга (поражения височных зон коры, структур гиппокампа) при его сотрясении наступают расстройства памяти, выражающиеся в потере способности запоминать текущие события или события недавнего прошлого (произошедшие незадолго до воздействия, вызвавшего данную патологию) при сохранении памяти на прежние, давно случившиеся события. Однако ряд других воздействий оказывает однотипное влияние и на кратковременную, и на долговременную память. По-видимому, несмотря на некоторые заметные различия физиологических и биохимических механизмов, ответственных за формирование и проявление кратковременной и долговременной памяти, в их природе намного больше общего, чем различного; их можно рассматривать как последовательные этапы единого механизма фиксации и упрочения следовых процессов, протекающих в нервных структурах под влиянием повторяющихся или постоянно действующих сигналов.

15.3. ЭМОЦИИ

Эмоция — специфическое состояние психической сферы, одна из форм целостной поведенческой реакции, вовлекающая многие физиологические системы и обусловленная как определенными мотивами, потребностями организма, так и уровнем возможного их удовлетворения. Субъективность категории эмоции проявляется в переживании человеком его отношения к окружающей действительности. Эмоции — рефлекторные реакции организма на внешние и внутренние раздражения, характеризующиеся ярко выраженной субъективной окраской и включающие практически все виды чувствительности.

Эмоции не имеют биологической и физиологической ценности, если организм располагает достаточной информацией для удовлетворения своих желаний, основных своих потребностей. Широта потребностей, а значит, и разнообразие ситуаций, когда у индивида формируется, проявляется эмоциональная реакция, значительно варьируют. Человек с ограниченными потребностями реже дает эмоциональные реакции по сравнению с людьми с высокими и разнообразными потребностями, например с потребностями, связанными с социальным статусом его в обществе.

Эмоциональное возбуждение как результат определенной мотивационной деятельности теснейшим образом связано с удовлетворением трех основных потребностей человека: пищевой, защитной и половой. Эмоция как активное состояние специализированных мозговых структур определяет изменения в поведении организма в направлении либо минимизации, либо максимизации этого состояния. Мотивационное возбуждение, ассоциируемое с разными эмоциональными состояниями (жажда, голод, страх), мобилизует организм к быстрому и оптимальному удовлетворению потребности. Удовлетворенная потребность реализуется в положительной эмоции, которая и выступает в качестве подкрепляющего фактора. Эмоции возникают в эволюции в виде субъективных ощущений, позволяющих животному и человеку быстро оценивать как сами потребности организма, так и действия на него различных факторов внешней и внутренней среды. Удовлетворенная потребность вызывает эмоциональное переживание положительного характера и определяет направление поведенческой деятельности. Положительные эмоции, закрепляясь в памяти, выполняют важную роль в механизмах формирования целенаправленной деятельности организма.

Эмоции, реализуемые специальным нервным аппаратом, проявляются при недостатке точных сведений и путей достижения жизненных потребностей. Такое представление о природе эмоции позволяет формировать ее информационную природу в следующей форме (П. В. Симонов): Э=П (Н—С), где Э — эмоция (определенная количественная характеристика эмоционального состояния организма, обычно выражаемая важными функциональными параметрами физиологических систем организма, например частота сердечных сокращений, артериальное давление, уровень адреналина в организме и т.д.); П— жизненно важная потребность организма (пищевые, оборонительные, половые рефлексы), направленная на выживание индивида и продолжение рода, у человека дополнительно еще определяемая социальными мотивами; Н — информация, необходимая для достижения цели, удовлетворения данной потребности; С — информация, которой владеет организм и которая может быть использована для организации целенаправленных действий.

Дальнейшее развитие эта концепция получила в трудах Г. И. Косицкого, который предложил оценивать величину эмоционального напряжения по формуле:

СН = Ц (Ин∙Вн∙Эн— Ис∙Вс∙Эс),

где СН — состояние напряжения, Ц— цель, Ин,Вн,Эн — необходимые информация, время и энергия, Ис, Дс, Эс — существующие у организма информация, время и энергия.

Первая стадия напряжения (CHI) — состояние внимания, мобилизация активности, повышение работоспособности. Эта стадия имеет тренирующее значение, повышая функциональные возможности организма.

Вторая стадия напряжения (CHII) характеризуется максимальным увеличением энергетических ресурсов организма, повышением артериального давления, увеличением частоты сердцебиений, дыхания. Возникает стеническая отрицательная эмоциональная реакция, имеющая внешнее выражение в форме ярости, гнева.

Третья стадия (СНШ) — астеническая отрицательная реакция, характеризующаяся истощением ресурсов организма и находящая свое психологическое выражение в состоянии ужаса, страха, тоски.

Четвертая стадия (CHIV) — стадия невроза.

Эмоции следует рассматривать как дополнительный механизм активного приспособления, адаптации организма к окружающей среде при недостатке точных сведений о способах достижения его целей. Адаптивность эмоциональных реакций подтверждается тем обстоятельством, что они вовлекают в усиленную деятельность лишь те органы и системы, которые обеспечивают лучшее взаимодействие организма и окружающей среды. На это же обстоятельство указывает резкая активация во время эмоциональных реакций симпатического отдела автономной нервной системы, обеспечивающей адаптационно-трофические функции организма. В эмоциональном состоянии наблюдается значительное повышение интенсивности окислительных и энергетических процессов в организме.

Эмоциональная реакция есть суммарный результат как величины определенной потребности, так и возможности удовлетворения этой потребности в данный момент. Незнание средств и путей достижения цели представляется источником сильных эмоциональных реакций, при этом растет чувство тревоги, навязчивые мысли становятся неодолимыми. Это характерно для всех эмоций. Так, эмоциональное ощущение страха характерно для человека, если он не располагает средствами возможной зашиты от опасности. Ощущение ярости возникает у человека, когда он желает сокрушить противника, то или иное препятствие, но не располагает соответствующей силой (ярость как проявление бессилия). Человек испытывает горе (соответствующая эмоциональная реакция), когда он не имеет возможности восполнить утрату.

Знак эмоциональной реакции можно определить по формуле П. В. Симонова. Отрицательная эмоция возникает в случае, когда Н>С и, напротив, положительная эмоция ожидается, когда H < С. Так, человек испытывает радость при избытке у него информации, необходимой для достижения цели, когда цель оказывается ближе, чем мы думали (источник эмоции — неожиданное приятное сообщение, неожиданная радость).

В теории функциональной системы П. К. Анохина нейрофизиологическая природа эмоций связывается с представлениями о функциональной организации приспособительных действий животных и человека на основе понятия об «акцепторе действия». Сигналом к организации и функционированию нервного аппарата отрицательных эмоций служит факт рассогласования «акцептора действия» — афферентной модели ожидаемых результатов с афферентацией о реальных результатах приспособительного акта.

Эмоции оказывают существенное влияние на субъективное состояние человека: в состоянии эмоционального подъема более активно работает интеллектуальная сфера организма, человека посещает вдохновение, повышается творческая активность. Эмоции, особенно положительные, играют большую роль в качестве мощных жизненных стимулов для сохранения высокой работоспособности и здоровья человека. Все это дает основание считать, что эмоция — состояние высшего подъема духовных и физических сил человека.

Представление об эмоциях как целостной системе организации центральных нервных структур определяет важное значение в ее реализации таких структур мозга, как гиппокамп, гипоталамус, миндалина, лобные отделы коры большого мозга (см. главу 4).

15.4. СОН И ГИПНОЗ

15.4.1. Сон

Сон — жизненно необходимое периодически наступающее особое функциональное состояние, характеризующееся специфическими электрофизиологическими, соматическими и вегетативными проявлениями.

Известно, что периодическое чередование естественного сна и бодрствования относится к так называемым циркадианным ритмам и во многом определяется суточным изменением освещенности. Человек примерно треть своей жизни проводит во сне, что обусловило давний и пристальный интерес у исследователей к этому состоянию.

Теории механизмов сна. Согласно концепции 3. Фрейда, сон — это состояние, в котором человек прерывает сознательное взаимодействие с внешним миром во имя углубления в мир внутренний, при этом внешние раздражения блокируются. По мнению 3. Фрейда, биологической целью сна является отдых.

Гуморальная концепция основную причину наступления сна объясняет накоплением продуктов метаболизма во время периода бодрствования. Согласно современным данным, большую роль в индуцировании сна имеют специфические пептиды, например пептид «дельта-сна».

Теория информационного дефицита основной причиной наступления сна полагает ограничение сенсорного притока. Действительно, в наблюдениях на добровольцах в процессе подготовки к космическому полету было выявлено, что сенсорная депривация (резкое ограничение или прекращение притока сенсорной информации) приводит к наступлению сна.

Тесным образом с этой концепцией связана теория нервных центров сна. Впервые Гесс показал, что стимуляция определенных зон гипоталамуса или ретикулярной формации может вызвать сон (рис. 15.5).

Рис. 15.5. Структуры мозга, принимающие участие в регуляции уровня бодрствова­ния и глубины сна (по А. Н. Шеповальникову).

1 — синхронизирующая бульварная система; 2 — дополнительная бульварная система; 3 — структуры моста, ответственные за парадоксальный сон; 4 — активирующие влияния ретикулярной формации ствола мозга; 5 — синхронизирующая таламическая система; 6 — активирующие влияния гипоталамуса на структуры ствола мозга; 7 — базальная синхронизирующая зона; 8 — активирующие влияния гипоталамуса на структуры коры большого мозга; 9 — облегчающее влияние высокочастотной стимуляции интраламинарных ядер таламуса на ретикулярную формацию; 10 — влияние лимбической системы, способст­вующей сну; 11 — облегчающие и угнетающие влияния коры большого мозга на рети­кулярную формацию.

По определению И. П. Павлова и многих его последователей, естественный сон представляет собой разлитое торможение кортикальных и субкортикальных структур, прекращение контакта с внешним миром, угашение афферентной и эфферентной активности, отключение на период сна условных и безусловных рефлексов, а также развитие общей и частной релаксации. Современные физиологические исследования не подтвердили наличия разлитого торможения. Так, при микроэлектродных исследованиях обнаружена высокая степень активности нейронов во время сна практически во всех отделах коры большого мозга. Из анализа паттерна этих разрядов был сделан вывод, что состояние естественного сна представляет иную организацию активности головного мозга, отличающуюся от активности мозга в состоянии бодрствования.

Наиболее интересные результаты были получены при проведении полиграфических исследований во время ночного сна. Во время таких исследований в течение всей ночи непрерывно на многоканальном регистраторе записывают электрическую активность мозга — электроэнцефалограмму (ЭЭГ) в различных точках (чаще всего в лобных, затылочных и теменных долях) синхронно с регистрацией быстрых (БДГ) и медленных (МДГ) движений глаз и электромиограммы скелетной мускулатуры, а также ряд вегетативных показателей — деятельности сердца, пищеварительного тракта, дыхания, температуры и т. д.

ЭЭГ во время сна. Открытие Е. Азеринским и Н. Клейтманом явления «быстрого», или «парадоксального», сна, во время которого были обнаружены быстрые движения глазных яблок (БДГ) при закрытых веках и общей полной мышечной релаксации, послужило основанием для современных исследований физиологии сна. Оказалось, что сон представляет собой совокупность двух чередующихся фаз: «медленного», или «ортодоксального», сна и «быстрого», или «парадоксального», сна. Название этих фаз сна обусловлено характерными особенностями ЭЭГ: во время «медленного» сна регистрируются преимущественно медленные волны, а во время «быстрого» сна — быстрый бета-ритм, характерный для бодрствования человека, что дало основание называть эту фазу сна «парадоксальным» сном. На основании электроэнцефалографической картины фазу «медленного» сна в свою очередь подразделяют на несколько стадий. Выделяют следующие основные стадии сна:

стадия I — дремота, процесс погружения в сон. Для этой стадии характерна полиморфная ЭЭГ, исчезновение альфа-ритма. В течение ночного сна эта стадия обычно непродолжительна (1— 7 мин). Иногда можно наблюдать медленные движения глазных яблок (МДГ), при этом быстрые их движения (БДГ) полностью отсутствуют;

стадия II характеризуется появлением на ЭЭГ так называемых сонных веретен (12—18 в секунду) и вертекс-потенциалов, двухфазовых волн с амплитудой около 200 мкВ на общем фоне электрической активности амплитудой 50—75 мкВ, а также К-комплексов (вертекс-потенциал с последующим «сонным веретеном»). Эта стадия является наиболее продолжительной из всех; она может занимать около 50 % времени всего ночного сна. Движения глаз не наблюдаются;

стадия III характеризуется наличием К-комплексов и ритмической активностью (5—9 в секунду) и появлением медленных, или дельта-волн (0,5—4 в секунду) с амплитудой выше 75 мкВ. Суммарная продолжительность дельта-волн в этой стадии занимает от 20 до 50 % от всей III стадии. Отсутствуют движения глаз. Довольно часто эту стадию сна называют дельта-сном.

Стадия IV — стадия «быстрого», или «парадоксального», сна характеризуется наличием десинхронизированной смешанной активности на ЭЭГ: быстрые низкоамплитудные ритмы (по этим проявлениям напоминает стадию I и активное бодрствование — бета-ритм), которые могут чередоваться с низкоамплитудными медленными и с короткими вспышками альфа-ритма, пилообразными разрядами, БДГ при закрытых веках.

Ночной сон обычно состоит из 4—5 циклов, каждый из которых начинается с первых стадий «медленного» сна и завершается «быстрым» сном. Длительность цикла у здорового взрослого человека относительно стабильна и составляет 90—100 мин. В первых двух циклах преобладает «медленный» сон, в последних — «быстрый», .а «дельта»-сон резко сокращен и даже может отсутствовать.

Продолжительность «медленного» сна составляет 75—85 %, а «парадоксального» — 15—25 % от общей продолжительности ночного сна.

Мышечный тонус во время сна. На протяжении всех стадий «медленного» сна тонус скелетной мускулатуры прогрессивно падает, в «быстром» сне мышечный тонус отсутствует.

Вегетативные сдвиги во время сна. Во время «медленного» сна замедляется работа сердца, урежается частота дыхания, возможно возникновение дыхания Чейна — Стокса, по мере углубления «медленного» сна может быть частичная обструкция верхних дыхательных путей и появление храпа. Секреторная и моторная функции пищеварительного тракта по мере углубления «медленного» сна уменьшаются. Температура тела перед засыпанием снижается и по мере углубления «медленного» сна это снижение прогрессирует. Полагают, что снижение температуры тела может являться одной из причин наступления сна. Пробуждение сопровождается повышением температуры тела.

В «быстром» сне частота сердцебиений может превышать частоту сердцебиений в бодрствовании, возможно возникновение различных форм аритмий и значительное изменение АД. Полагают, что сочетание этих факторов может привести к внезапной смерти во время сна.

Дыхание нерегулярное, нередко возникает длительное апноэ. Терморегуляция нарушена. Секреторная и моторная активность пищеварительного тракта практически отсутствует.

Для стадии «быстрого» сна очень характерно наличие эрекции полового члена и клитора, которая наблюдается с момента рождения.

Полагают, что отсутствие эрекции у взрослых свидетельствует об органических поражениях головного мозга, а у детей приведет к нарушению нормального сексуального поведения во взрослом состоянии.

Функциональное значение отдельных стадий сна различно. В настоящее время сон в целом рассматривают как активное состояние, как фазу суточного (циркадианного) биоритма, выполняющую адаптивную функцию. Во сне происходит восстановление объемов кратковременной памяти, эмоционального равновесия, нарушенной системы психологических защит.

Во время дельта-сна происходит организация информации, поступившей в период бодрствования с учетом степени ее значимости. Предполагают, что во время дельта-сна происходит восстановление физической и умственной работоспособности, что сопровождается мышечной релаксацией и приятными переживаниями; важным компонентом этой компенсаторной функции является синтез белковых макромолекул во время «дельта»-сна, в том числе в ЦНС, которые в дальнейшем используются во время «быстрого» сна.

В начальных исследованиях «быстрого» сна было обнаружено, что при длительной депривации «быстрого» сна происходят значительные изменения психики. Появляется эмоциональная и поведенческая расторможенность, возникают галлюцинации, паранояльные идеи и другие психотические явления. В дальнейшем эти данные не подтвердились, но было доказано влияние депривации «быстрого» сна на эмоциональный статус, устойчивость к стрессу и механизмы психологической защиты. Более того, анализ многих исследований показывает, что депривация «быстрого» сна имеет полезный терапевтический эффект в случае эндогенной депрессии. «Быстрый» сон играет большую роль в снижении непродуктивного тревожного напряжения.

Сон и психическая деятельность, сновидения. При засыпании утрачивается волевой контроль за мыслями, нарушается контакт с реальностью и формируется так называемое регрессивное мышление. Оно возникает при уменьшении сенсорного притока и характеризуется наличием фантастических представлений, диссоциацией мыслей и образов, отрывочных сцен. Возникают гипнагогические галлюцинации, которые представляют собой серии зрительных застывших образов (типа слайдов), при этом субъективно время течет значительно быстрее, чем в реальном мире. В «дельта»-сне возможны разговоры во сне. Напряженная творческая деятельность резко увеличивает продолжительность «быстрого» сна.

Первоначально было установлено, что сновидения возникают в «быстром» сне. Позднее было показано, что сновидения характерны и для «медленного» сна, особенно для стадии «дельта»-сна. Причины возникновения, характер содержания, физиологическая значимость сновидений давно привлекали внимание исследователей. У древних народов сновидения были окружены мистическими представлениями о потусторонней жизни и отождествлялись с общением с умершими. Содержанию сновидений приписывались функции толкований, предсказаний или предписаний к последующим действиям или событиям. Множество исторических памятников свидетельствует о значительном влиянии содержания сновидений на бытовую и социально-политическую жизнь людей практически всех древних культур.

В античную эпоху истории человечества сновидения интерпретировались также в их связи с активным бодрствованием и эмоциональными потребностями. Сон, как определял Аристотель, является продолжением душевной жизни, которой живет человек и в бодрствующем состоянии. Задолго до психоанализа 3. Фрейда Аристотель полагал, что сенсорная функция редуцируется во сне, уступая чувствительности сновидений к эмоциональным субъективным искажениям.

И. М. Сеченов называл сновидения небывалыми комбинациями бывалых впечатлений.

Сновидения видят все люди, однако многие их не помнят. Полагают, что в одних случаях это связано с особенностями механизмов памяти у конкретного лица, а в других случаях это является своеобразным механизмом психологической защиты. Происходит как бы вытеснение неприемлемых по содержанию сновидений, т. е. мы «стараемся забыть».

Физиологическое значение сновидений. Оно заключается в том, что в сновидениях используется механизм образного мышления для решения проблем, которые не удалось решить в бодрствовании с помощью логического мышления. Ярким примером может служить известный случай с Д. И. Менделеевым, который «увидел» структуру своей знаменитой периодической системы элементов во сне.

Сновидения являются механизмом своеобразной психологической защиты — примирения нерешенных конфликтов в бодрствовании, снятия напряжения и тревоги. Достаточно вспомнить пословицу «утро вечера мудренее». При решении конфликта во время сна происходит запоминание сновидений, в противном случае сновидения вытесняются или возникают сновидения устрашающего характера — «снятся одни кошмары».

Сновидения у мужчин и женщин различаются. Как правило, в сновидениях мужчины более агрессивны, в то время как у женщин в содержании сновидений большое место занимают сексуальные компоненты.

Сон и эмоциональный стресс. Исследования показали, что эмоциональный стресс существенно влияет на ночной сон, изменяя продолжительность его стадий, т. е. нарушая структуру ночного сна, и изменяет содержание сновидений. Наиболее часто при эмоциональном стрессе отмечают сокращение периода «быстрого» сна и удлинение латентного периода засыпания. У испытуемых перед экзаменом сокращалась общая продолжительность сна и отдельных его стадий. У парашютистов перед сложными прыжками увеличиваются период засыпания и первая стадия «медленного» сна.

15.4.2. Гипноз

Гипноз в переводе с греческого hypnos означает сон. Однако, пожалуй, это единственное, что объединяет эти два понятия. Гипноз по своей сущности резко отличается от состояния естественного сна.

Гипноз — особое состояние человека, вызываемое искусственно, с помощью внушения и отличающееся избирательностью реагирования, повышенной восприимчивостью к психологическому воздействию гипнотизирующего и к понижению восприимчивости к другим влияниям.

Различают следующие стадии гипноза:

1) стадия гипноидности сопровождается мышечным и психическим расслаблением, миганием и закрыванием глаз;

2) стадия легкого транса, для которой характерна каталепсия конечностей, г. е. конечности могут длительное время находиться в необычном положении;

3) стадия среднего транса, при которой возникают амнезия, изменения личности; возможны простые гипнотические внушения;

4) стадия глубокого транса характеризуется полным сомнамбулизмом, фантастическими внушениями.

Теории гипноза. Согласно теории частичного сна, созданной школой И. П. Павлова, гипноз можно рассматривать как искусственно вызванный частичный сон. В эксперименте на животных или в клинических наблюдениях на людях условно-рефлекторным путем в головном мозге испытуемых создавали так называемый сторожевой центр, или очаг активного стойкого возбуждения, через который осуществлялся контакт с гипнотизером. Остальные зоны коры были заторможены. Активность «сторожевого центра» вполне достаточна для связи гипнотизера и пациента, однако эта связь осуществляется на подсознательном уровне и недостаточна для осознания пациентом реальной ситуации.

Согласно этой теории, гипнотическое состояние подразделяется на три фазы: 1) уравнительная, в которую все раздражители, независимо от их интенсивности, действуют одинаково; 2) парадоксальная, когда слабый раздражитель оказывает эффект, в то время как сильный раздражитель не действует; 3) ультрапарадоксальная, когда возникает ответ на действие стимулов, на которые организм в состоянии бодрствования не реагирует.

Теория психоанализа предложена школой 3. Фрейда. Согласно этой теории, во главу угла ставятся взаимоотношения гипнотизера и гипнотизируемого («сумасшествие вдвоем»). Гипнотизер играет роль всемогущего родителя. «Гипнотизер бессознательно желает магической власти и ...господства над пациентом» (3. Фрейд). У гипнотизера возникает парадоксальная ситуация; одновременные потребности в близости и ощущение необходимости в дистанции. Решение этой задачи дает метод словесного внушения, который защищает от эротизма ситуации.

Слово как лечебный фактор имеет колоссальное значение в практике врача. Врач в подсознании пациента предстает всемогущим человеком, поэтому любое слово может оказывать на пациента гипнотическое воздействие. Неосторожно высказанное замечание в адрес больного может значительно усугубить развитие болезни, и наоборот, внимательное отношение и нужные слова могут в значительной степени облегчить задачу врача.

Восприимчивость к гипнозу. Оценка степени восприимчивости к гипнотическому воздействию затрудняется вследствие отсутствия объективных критериев оценки глубины транса. Полагают, что восприимчивость к гипнозу зависит от того, насколько индивидуум способен «включать в себя» внешний стимул, сделать его частью своего «я». Определенное значение в восприимчивости к гипнозу имеют взаимоотношения гипнотизера и гипнотизируемого («сумасшествие вдвоем»). Каждый «играет» ту роль, которую он выбрал для себя, и получает то, что хотел. При этом существенную роль играют личность, известность, социальный престиж и соответствующая внешность гипнотизера. Восприимчивость к гипнозу резко возрастает в больших группах, при этом усиливает гипнотическое воздействие «эффект толпы», поэтому недопустимо использование гипнотического воздействия в лечебных целях на большие коллективы людей, каждый из которых может иметь различные психические и соматические заболевания.

Техника гипноза. С больным проводят подготовительную беседу, определяют уровень образования, культуры, социальный статус. Проводят тесты, определяющие степень внушаемости пациента, после чего осуществляют собственно гипнотическое воздействие.

Применение гипноза в лечебных целях может проводиться в различных направлениях. Различают терапию посредством гипноза и терапию под гипнозом. В терапии посредством гипноза различают два подхода: первый предложен школой И. П. Павлова и включает в себя «снятие симптомов» путем словесного внушения, гипнотический сон; второй — школой 3. Фрейда и представляет собой метод «перестройки» личности («замещение» симптомов).

В терапии под гипнозом используют метод прямого внушения для изменения поведения; метод «катарсиса», с помощью которого проявляются подавленные, «вытесненные» эмоции, что позволяет выявить происхождение различных психосоматических расстройств; метод гипноанализа, с помощью которого под гипнозом происходят активация симптомов и их последующий анализ в бодрствовании или под гипнозом.

15.5. ОСНОВЫ ПСИХОФИЗИОЛОГИИ

15.5.1. Нейрофизиологические основы психической деятельности

Основой психического мира являются сознание, мышление, интеллектуальная деятельность человека, представляющие собой высшую форму адаптивного приспособительного поведения. Психическая деятельность — это качественно новый, более высокий, чем условно-рефлекторное поведение, уровень высшей нервной деятельности, свойственный человеку. В мире высших животных этот уровень представлен лишь в зачаточном виде.

В развитии психического мира человека как эволюционизирующей формы отражения можно выделить следующие 2 стадии: 1) стадия элементарной сенсорной психики — отражение отдельных свойств предметов, явлений окружающего мира в форме ощущений. В отличие от ощущений восприятие — результат отражения предмета в целом и вместе с тем нечто все еще более или менее расчлененное (это начало построения своего «я» как субъекта сознания). Более совершенной формой конкретно-чувственного отражения действительности, формируемой в процессе индивидуального развития организма, является представление. Представление — образное отражение предмета или явления, проявляющееся в пространственно-временной связи составляющих его признаков и свойств. В нейрофизиологической основе представлений лежат цепи ассоциаций, сложные временные связи; 2) стадия формирования интеллекта и сознания, реализующаяся на основе возникновения целостных осмысленных образов, целостного мироощущения с пониманием своего «я» в этом мире, своей как познавательной, так и созидательной творческой деятельности. Психическая деятельность человека, наиболее полно реализующая этот высший уровень психики, определяется не только количеством и качеством впечатлений, осмысленных образов и понятий, но и существенно более высоким уровнем потребностей, выходящим за пределы чисто биологических потребностей. Человек желает уже не только «хлеба», но и «зрелищ» и соответствующим образом строит свое поведение. Его действия, поведение становятся как следствием получаемых впечатлений и порождаемых ими мыслей, так и средством активного их добывания. Соответствующим образом меняется в эволюции и соотношение объемов корковых зон, обеспечивающих сенсорные, гностические и логические функции в пользу последних.

Психическая деятельность человека состоит не только в построении более сложных нервных моделей окружающего мира (основе процесса познания), но и в производстве новой информации, разных форм творчества. Несмотря на то что многие проявления психического мира человека оказываются оторванными от непосредственных стимулов, событий внешнего мира и кажутся не имеющими под собой реальных объективных причин, нет сомнения, что начальными, запускающими их факторами являются вполне детерминированные явления и предметы, отражающиеся в структурах мозга на основе универсального нейрофизиологического механизма — рефлекторной деятельности. Эта идея, высказанная И. М. Сеченовым в виде тезиса «Все акты сознательной и бессознательной деятельности человека по способу происхождения — суть рефлексы», остается общепризнанной.

Субъективность психических нервных процессов заключается в том, что они являются свойством индивидуального организма, не существуют и не могут существовать вне конкретного индивидуального мозга с его периферическими нервными окончаниями и нервными центрами и не являются абсолютно точной зеркальной копией окружающего нас реального мира.

Простейшим, или базисным, психическим элементом в работе мозга является ощущение. Оно служит тем элементарным актом, который, с одной стороны, связывает нашу психику непосредственно с внешним воздействием, а с другой — является элементом в более сложных психических процессах. Ощущение — это осознанная рецепция, т. е. в акте ощущения присутствует определенный элемент сознания и самосознания.

Ощущение возникает как результат определенного пространственно-временного распределения паттерна возбуждения, однако для исследователей еще непреодолимым представляется переход от знания пространственно-временной картины возбужденных и заторможенных нейронов к самому ощущению как нейрофизиологической основе психики. По Л. М. Чайлахяну, переход от поддающегося полному физико-химическому анализу нейрофизиологического процесса к ощущению есть основной феномен элементарного психического акта, феномен сознания.

В этом плане понятие «психическое» представляется как осознанное восприятие действительности, уникальный механизм развития процесса естественной эволюции, механизм трансформации нейрофизиологических механизмов в категории психики, сознания субъекта. Психическая деятельность человека во многом обусловлена способностью отвлекаться от реальной действительности и осуществлять переход от непосредственных чувственных восприятий к воображаемой действительности («виртуальная» реальность). Человеческая способность представить себе возможные последствия своих действий — высшая форма абстрагирования, которая недоступна животному. Ярким примером может служить поведение обезьяны в лаборатории И. П. Павлова: животное каждый раз гасило горевший на плоту огонь водой, которую оно приносило в кружке из находившегося на берегу бака, хотя плот находился в озере и со всех сторон был окружен водой.

Высокий уровень абстракции в явлениях психического мира человека определяет трудности в решении кардинальной проблемы психофизиологии — нахождении нейрофизиологических коррелятов психического, механизмов превращения материального нейрофизиологического процесса в субъективный образ. Основная трудность в объяснении специфических особенностей психических процессов на основе физиологических механизмов деятельности нервной системы заключается в недоступности психических процессов прямому чувственному наблюдению, изучению. Психические процессы теснейшим образом связаны с физиологическими, но не сводятся к ним.

Вторая сигнальная система. Для обеспечения несравненно более высокого уровня абстрагирования у человека появляется и развивается вторая сигнальная система: устная и письменная речь. Если даже у высших животных выработка условных рефлексов третьего и четвертого порядка представляется достаточно трудной задачей (эти рефлексы непрочны и быстро угасают), то у человека слово в виде условного обозначения, знака, не имеющего реального объективного однозначного физического содержания в виде предметов и явлений материального мира, становится достаточно сильным и прочным стимулом. Одно и то же явление, предмет на разных языках обозначаются словами, имеющими разное звучание и написание.

В основе психической деятельности лежат не элементарные процессы возбуждения и торможения, а системные, объединяющие многие одновременно протекающие в мозге процессы анализа и синтеза в интегрированное целое. Психическая деятельность — функция целостного мозга, когда на основе интеграции многих нейрофизиологических механизмов мозга возникает новое качество — психика. При этом нервная модель стимула есть не что иное, как нейрофизиологическая основа формирования субъективного образа. Субъективный образ возникает на базе нервных моделей при декодировании информации и сравнении ее с реально существующим материальным объектом.

В настоящее время установлены следующие достаточно определенные корреляции между различными проявлениями психической деятельности и нейрофизиологическими показателями работы мозга: 1) «волны ожидания» на ЭЭГ, которые регистрируются в ответ на сигнал, предупреждающий о предстоящей команде к действию (Г. Уолтер); 2) поздние компоненты вызванного потенциала, ассоциируемые с корковыми механизмами оценки смыслового содержания сенсорных сигналов (Л. М. Иваницкий, Э. Л. Костандов); 3) мозговые коды психической деятельности в виде определенных паттернов импульсной активности нейронов. При мульти-клеточном отведении импульсных реакций корковых нейронов установлена специфичность паттернов (узоров) импульсных потенциалов нервных клеток и нейронных ансамблей не только в отношении физических (акустических) сигналов, но и семантического (смыслового) содержания воспринимаемых слов (Н. П. Бехтерева) .

Психической деятельности человека эволюционно предшествуют некоторые элементы психического поведения у высших животных. К ним относится психонервная деятельность, направляемая воспроизведением образов предыдущего опыта, основанная на образном поведении животного, когда основным действенным стимулом для запускания какого-либо поведенческого акта становится не сам реальный объективный стимул окружающей среды, а «нейронный» образ этого стимула, сформировавшийся в нервных центрах (И. С. Беритов). Поведенческие акты, определяемые психонервной деятельностью, возникают при воспроизведении образа жизненно важного объекта, приводящего к удовлетворению какой-либо органической потребности животного и человека. Например, в случае индивидуального пищевого поведения таким конечным объектом является пища. Воспроизведенный «образ» пищи проецируется в определенном месте внешней среды и служит стимулом для движения животного к данному месту подобно тому, как это происходит, когда действительно пища располагается в этом месте. На определенном этапе формирования «психического» образа пищи он оказывается более сильным стимулом, чем реальная пища: животное подбегает к месту, ассоциируемому животным с пищей, но в действительности не содержащей ее (хотя животное хорошо видит, что пищи нет, но «образ пищи» оказывается сильнее реальности).

Форма поведения животных и человека, определяемая образами, характеризуется тем, что при помощи проецируемых в мозге образов внешних объектов у индивида устанавливаются пространственные отношения как между этими объектами, так и между собой и ними. Психонервная активность интегрирует элементы внешней среды в одно целое переживание, производящее целостный образ. Такое воспроизведение образа может происходить и спустя длительное время после начального восприятия жизненно важной ситуации. Иногда образ может удерживаться всю жизнь без повторного его воспроизведения. Образ фиксируется в памяти и извлекается оттуда для удовлетворения господствующей биологической потребности в данный момент. В отличие от классических условных рефлексов, которые требуют повторяемости, психонервный образ формируется сразу после одной реализации поведенческого акта.

Нервным субстратом, ответственным за образное отражение, очевидно, является система звездчатых нейронов с аксонами, образующими синаптические связи как с другими звездчатыми нейронами, так и через возвратные контакты с этим же звездчатым нейроном. При восприятии внешнего мира временная связь между воспринимающими сенсорную информацию звездчатыми нейронами коры большого мозга устанавливается сразу при первом одновременном или последовательном возбуждении нервных клеток, образующих проекцию данного внешнего предмета, явления.

Другую форму сложных поведенческих реакций, связанных с психической сферой деятельности организма и прямо не сводимой к обычным условно-рефлекторным реакциям, представляют экстраполяционные рефлексы, основанные на способности животных и человека к прогнозированию событий, оценке, предвидению результатов своей деятельности в будущем (Л. В. Крушине кий). Экстраполяционная, или рассудочная, деятельность — это способность организма, наблюдая за течением некоторого важного события, улавливать закономерность его протекания. В результате, когда наблюдение прерывается, организм экстраполирует, т. е. мысленно продолжает ход события, соответствующим образом строя свое поведение без специальной процедуры стандартного обучения. Суть эксперимента по изучению экстраполяционной способности животного обычно сводится к следующему. Животное должно находить некий прямолинейно движущийся с постоянной скоростью объект. Особенность задачи для животного состоит в том, что первоначально видимый отрезок пути затем переходит в участок, закрытый невидимой перегородкой (ширмой), животное должно подойти к концу перегородки, учитывая, представляя себе (экстраполируя) невидимый участок, исходя из сложившейся у него в мозге картины направления движения объекта.

Экстраполяционная, или рассудочная, деятельность проявляется как генетически детерминированная врожденная способность животного использовать приобретенный в течение жизни опыт в новой, незнакомой для него среде (О. С. Адрианов). Характерное свойство элементарной рассудочной деятельности заключается в способности организма улавливать простейшие эмпирические законы, связывающие предметы и явления окружающей среды, и на этой основе приобретать возможность оперировать ими при построении и реализации программ поведения в новых ситуациях. У человека эта способность развита в наибольшей степени и является одной из физиологических предпосылок, обеспечивающих возможность творческой деятельности. Экстраполяционная деятельность является важным объективным подходом к изучению элементарной рассудочной деятельности.

Важнейшим элементом экстраполяции является опережение, предвосхищение будущих событий как специализированная форма отражения действительности. Возможная природа феномена опережающего отражения в структурах мозга, ответственных за высшие формы психической деятельности, по мнению П. К. Анохина,

Рис. 15.6. Возможный механизм формирования феномена опережающего отражения (схема).

А, Б, В... Р — реальные события окружающей действительности; а, б. в... р — копии (модели, образы) событий в структурах мозга.

связана с разной скоростью протекания последовательных процессов в окружающей среде, природе и структурах мозга, обеспечивающих процесс отражения этой последовательности внешних явлений (рис. 15.6). Поскольку скорость процессов, протекающих в мозге, на несколько порядков выше, чем скорость процессов эволюции в окружающей среде, при достаточной длине последовательных событий на выходе системы возможно (в отражающих структурах мозга) образование модели, копии явления, предмета окружающей среды раньше, чем этот предмет, явление, событие действительно возникает в окружающем мире. Естественно, для этого надо достаточно четко и верно экстраполировать действительный ход, направление движения динамического последовательного процесса окружающей среды.

функция опережающего отражения, лежащего в основе формирования сложных целенаправленных поведенческих актов, в значительной степени управляется лобными отделами коры большого мозга. С их участием ассоциируется функция опережения, направленная на обеспечение сложных, но не закрепленных долгим обучением динамичных стереотипов (О. С. Адрианов).

15.5.2. Психофизиология процесса принятия решения

Вся жизнь человека состоит из принятия решений, непрерывной последовательности операций выбора, при этом человек постоянно сталкивается с проблемой выбора между несколькими способами поведения. Принятие решения становится обязательным моментом в жизни, поведении человека: с момента рождения и до самой смерти он оказывается постоянно в состоянии необходимости принять те или иные решения, одни из которых осуществляются автоматически на подсознательном уровне, другие становятся предметом длительного мучительного раздумья, выбора одного из возможных вариантов.

Процесс принятия решения — производное неопределенности ситуации, в которой оно совершается. При полной определенности, когда отсутствует возможность для альтернативных действий, в сущности и нет никакой проблемы: решение принимается однозначно, автоматически, часто даже не затрагивая сферу сознания. Процесс выбора становится проблемой лишь тогда, когда в системе человек — окружающая среда присутствует неопределенность применительно к осуществлению действий, направленных на достижение определенной цели, конечного результата.

Чем больше степень этой неопределенности, тем меньше оснований для однозначного решения и тем более вероятностным оно

Рис. 15.7. Зависимость времени двигательной реакции человека от сложности решаемой задачи выбора между несколькими дифференцируемыми сигналами (по Hick, 1952). По оси абсцисс — число дифференцируемых сигналов (наверху), информативность сигналов в битах (внизу), по оси ординат — время реакции в с.

становится. Мозг возмещает дефицит информации использованием более тонкого и сложного аппарата оценки вероятности того или иного события. Такое усложнение работы мозга, связанное с увеличением количества логических операций, требует большего времени для принятия решения. Поэтому усиление элементов неопределенности ситуации неизбежно приводит к усилению величины латентного периода реакции. С увеличением числа дифференцируемых сигналов возрастает неопределенность проблемной ситуации, в которой выполняется процедура принятия решения и как следствие увеличивается время реакции (рис. 15.7). Эта зависимость описывается следующим образом (Hick): А = Klog (n + 1), где А — время реакции с выбором; К — время простой реакции без выбора; n — количество дифференцируемых сигналов.

Познание психофизиологической основы интегративной деятельности высших отделов центральной нервной системы, обеспечивающих процессы сознания, мышления, невозможно без установления физиологических механизмов принятия решения как узлового момента любой формы целенаправленного поведения. Процесс принятия решения является универсальным принципом анализа, синтеза и переработки в центральных нервных образованиях входной сенсорной информации и формирования выходной реакции. Принятие решения — ключевой акт в деятельности любой достаточно сложной биологической системы, функционирующей в реальных условиях внешней среды, нашедший свое кульминационное развитие и совершенствование в различных формах проявления высшей нервной деятельности.

Суть процесса принятия решения сводится к нескольким моментам: восприятие, прием и обработка афферентной информации, образование, формирование поля альтернатив (набор возможных вариантов для последующего выбора), сравнительная оценка альтернативных действий в целях осуществления рационального выбора и собственно выбор альтернативы — кульминация решения проблемы. Такое представление подтверждает гипотезу о принятии решения как результате, неизбежном итоге интегративного процесса, когда из множества альтернатив организм стремится выбрать одну, единственную, наилучшим образом обеспечивающую решение стоящей перед ним задачи. Рассматривая побудительные причины того или иного решения, следует отметить, что не может быть решения вообще, решения, не направленного на какой-то определенный эффект, не имеющий какой-либо определенной цели. Выбор при принятии решения в значительной мере обусловлен текущей мотивацией. Выяснение нейрофизиологических механизмов, лежащих в основе операции выбора в альтернативной ситуации, направлено на дальнейшее углубление знаний о природе восприятия и переработки информации в коммуникационных системах мозга. Восприятие, отбор, фиксация и извлечение из памяти соответствующей информации, сравнительный анализ биологической значимости сигналов, выбор и реализация конкретного пути распространения возбуждения в нервных сетях, формирование эфферентных командных сигналов, поступающих к эффекторным органам, — все это важнейшие компоненты сложного процесса принятия решения. В информационных процессах, ассоциируемых с интеллектуальной творческой деятельностью человека, широко используется оперативный механизм принятия решения.

В процессе принятия решения различаются две принципиально различные фазы: 1) генерация разнообразия (в которой из универсального многообразия действий выбирается класс возможных допустимых путей решения, удовлетворяющих условиям решаемой задачи) и 2) ограничение этого разнообразия с целью отбора одного-единственного варианта действия (с точки зрения эффективности этого способа достижения цели). Структуру и последовательность действий, характеризующих механизм принятия решения, обычно представляют в виде некоторого древовидного процесса, в котором по мере решения проблемы — принятия решения в широком смысле этого слова, отсекаются бесперспективные ветви. Такими бесперспективными ветвями являются действия, приводящие к повторяемости промежуточного результата, нарушению условий задачи и т. д.

Степень уверенности лица, принимающего решение при выборе определенной альтернативы, определяется величиной субъективной вероятности этого альтернативного действия. Эти субъективные вероятности основаны на следующих трех эмпирически выведенных постулатах (П. Линдсей, Д. Норман): 1) люди обычно переоценивают встречаемость событий, имеющих низкую вероятность, и недооценивают встречаемость событий, характеризующихся высокими значениями вероятности; 2) люди считают, что событие, не наступившее в течение некоторого времени, имеет большую вероятность наступления в ближайшем будущем; 3) люди переоценивают вероятность благоприятных для них событий и недооценивают вероятность неблагоприятных.

Различают два основных способа принятия решения: алгоритмический и эвристический. Алгоритмический способ принятия решения предполагает наличие у лица, принимающего решение, значительной информации о проблемной ситуации. Алгоритмический способ принятия решения сводится к построению совокупности правил, следуя которым, автоматически достигается верное решение, т. е. имеется высокая гарантия верного решения проблемы.

При эвристическом1 способе получение верного результата при значительном дефиците информации о проблемной ситуации не гарантируется, однако лицо, принимающее решение, используя различные эвристические приемы, может найти рациональное решение. Эвристические приемы сокращают область поиска при решении сложной проблемы и, хотя и не лучшим образом, но все же вполне удовлетворительно обеспечивают решение стоящих перед человеком проблем в течение достаточно короткого промежутка времени.

Динамический характер интегральной оценки на клеточном уровне организации нервной системы проявляется в использовании в разных условиях функционирования и в различных комбинациях одних и тех же нейронов. Такой динамизм клеточных механизмов интеграции и выбора определяется особенностями сенсорного входа центрального нейрона, вариабельностью его рецептивного поля. Мотивационные влияния избирательно повышают возбудимость только тех нейронов и потенцируют только те рецептивные поля, которые когда-либо использовались в поведенческих актах. Обстановочная афферентация также модифицирует активацию рецептивных полей центральных нейронов. Сами мотивационные и обстановочные влияния, определяющие «предпусковую интеграцию» нейронного механизма принятия решения, не активируют центральные нейроны. Возбуждение последних происходит лишь на основе конвергенции на нервной клетке детонаторных влияний, определяемых функциональной организацией и топографией активируемых синапсов (П. К. Анохин, В. Б. Швырков).

1От греч. heurisko — нахожу.

Конвергенция на одном нейроне разных сенсорных потоков свидетельствует о том, что нервная клетка является достаточно сложным интегрирующим образованием, реализующим процесс принятия решения в виде генерации отдельного потенциала действия или определенной временной последовательности таких потенциалов. Обеспечение целенаправленной деятельности системы на основе процесса принятия решения немыслимо без оценки эффективности произведенного действия, что в кибернетических системах осуществляется при помощи обратной связи. Структурную основу такой обратной связи в нейронных структурах образуют коллатерали аксонов, поставляющих корковым и подкорковым нейронам точные копии, модели эфферентных возбуждений.

Согласно теории функциональной системы П. К. Анохина, принятие решения означает перевод одного системного физиологического процесса (афферентный синтез) в другой (программа действия). Этот механизм образует критический момент интегративной деятельности, когда разнообразные комбинации физиологических возбуждений, формируемых в центральных проекционных зонах мозга под влиянием соответствующих сенсорных потоков, преобразуются в эфферентные потоки импульсов — обязательные исполнительные команды. В понятиях кибернетики нервной системы процесс принятия решения означает освобождение организма от чрезвычайно большого количества степеней свободы, выбор и реализацию лишь одной из них.

Временные характеристики нейронных механизмов, обеспечивающих процесс принятия решения, находят отражение в компонентах вызванного потенциала — комплекса электрических волн, регистрируемых из зоны центрального представительства соответствующих сенсорных систем. Процесс принятия решения по времени (100—300 мс в разных сенсорных системах) соответствует длительности нейрофизиологического механизма восприятия и переработки сенсорной информации, идентифицируемого по первичному ответу (включая и негативную волну). Более поздние компоненты вызванного потенциала ассоциируются с функционированием исполнительных механизмов.

С помощью нейрофизиологических и клинических исследований установлено, что лобные доли мозга являются основным нервным субстратом, осуществляющим принятие решения при реализации целесообразных произвольных форм деятельности человека (Л. Р. Лурия). Поражение лобных долей мозга, не затрагивающее физиологические процессы на входе системы (восприятие информации), приводит к существенным нарушениям процесса выбора альтернативного действия.

Усложнение проблемной ситуации приводит к достоверному увеличению числа функциональных связей различных зон коры большого мозга, к формированию фокуса повышенной активности во фронтальных областях мозга. Активация теменных зон коры мозга наблюдается на заключительных этапах процесса принятия решения, построения адекватной модели ситуации. Высокая неопределенность проблемной ситуации находит отражение в разной интенсивности роста функциональных связей корковых зон (по сравнению с фоновым состоянием). При снижении неопределенности в случае предъявления испытуемому дополнительной информации наблюдается концентрация нейронной активности в лобных и затылочных (для зрительной информации), в лобных и височных (для слуховой информации) областях коры большого мозга. Это свидетельствует о том, что в основе нейрофизиологического процесса принятия решения лежат сложные взаимодействия первичных проекционных зон анализаторов и лобных долей мозга, играющих роль ведущего интегративного центра в коре мозга.

15.5.3. Сознание

Процесс сознания как заключительный этап процесса познания представляет собой сложный многоэтапный психофизиологический феномен восприятия, переработки и создания новой

Схема 15.2. Структуры сознания

информации, на каждом из этапов которого складываются определенные формы детерминации, причинно-следственной связи информационных процессов. Элементы сознания представлены на схеме 15.2.

Сложные формы интегративной деятельности мозга человека сводятся к непрерывному анализу элементов внешнего (окружающего) мира и последующему синтезу их в виде целостного восприятия.

Тем самым осуществляется приспособительное поведение на основе достаточно точного, верного отражения окружающей действительности в сознании человека.

Сознание человека — способность отделения себя («я») от других людей и окружающей среды («не я»), адекватного отражения действительности. Сознание базируется на коммуникации между людьми, развивается по мере приобретения индивидуального жизненного опыта и связано с речью (языком). На базе потребностей, как биологических, так и социальных и идеальных, формируются подсознание (автоматизированные, неосознаваемые навыки и формы поведения), сознание (знания, передаваемые другим индивидуумам), сверхсознание (творческая активность, интуитивное поведение).

Социальный аспект сознания заключается в том, что сознание выступает в качестве способности к такой переработке знания, которая обеспечивает направленную передачу информации от одного лица к другому в виде абстрактных символов речи (языка) как главного средства межличностной коммуникации.

Речь здесь выступает как материальная форма коммуникационного аспекта сознания (П. В. Симонов). Сознание—знание, которое может быть передано с помощью слов, образов, художественных произведений и т. д.

По А. Р. Леонтьеву, сознание отличается от более низко организованных форм психической деятельности выделением своего собственного «я» из окружающего мира.

Судя по характеру биоэлектрической активности, различия между осознанными и неосознаваемыми реакциями (протекающими на уровне подсознания) заключаются в степени глобальности активации мозга и зависят от количества вовлеченных в реакцию структур мозга.

Реакции, включая и поведенческие, реализуемые на уровне подсознания, носят автоматизированный характер, обеспечиваются активацией минимумом активированных нервных клеток сравнительно небольших участков мозга. Общебиологическая роль подсознательной обработки информации заключается в первичной фильтрации огромного количества входной информации: на уровне подсознания, например, протекает рефлекторная регуляция деятельности внутренних органов человека. Пока человек здоров, нет необходимости переводить интероцептивную информацию в сферу сознательной деятельности. Поэтому человек «ощущает», «воспринимает» свои внутренние органы лишь в случае формирования в них некоторого патологического процесса; в состоянии нормы для физиологической регуляции внутренних органов достаточно и уровня автоматизированных подсознательных рефлекторных реакций. Подключение сознания обычно достигается активацией большого количества корковых структур, вызываемой возбуждением ретикулярной формации мозгового ствола.

Установлено, что структуры мезенцефалической ретикулярной формации характеризуются мощным влиянием, активирующим сознание. Минимальный период активации мозговых структур для осознанного восприятия сигнала составляет 100—300 мс (время только внутрикоркового восприятия осознаваемого образа не превышает 80—150 мс).

Таким образом, сознание является результатом нейрофизиологических процессов, происходящих в определенных, но достаточно обширных областях мозга (кора большого мозга, таламо-кортикальные структуры, лимбическая система, ретикулярная формация ствола мозга).

15.5.4. Мышление

Мышление — высшая ступень человеческого познания, процесс отражения в мозге окружающего реального мира, основанная на двух принципиально различных психофизиологических механизмах: образования и непрерывного пополнения запаса понятий, представлений и вывода новых суждений и умозаключений. Мышление позволяет получить знание о таких объектах, свойствах и отношениях окружающего мира, которые не могут быть непосредственно восприняты при помощи первой сигнальной системы. Формы и законы мышления составляют предмет рассмотрения логики, а психофизиологические механизмы — соответственно — психологии и физиологии.

Мыслительная деятельность человека неразрывно связана со второй сигнальной системой. В основе мышления различают два процесса: превращение мысли в речь (письменную или устную) и извлечение мысли, содержания из определенной его словесной формы сообщения. Мысль — форма сложнейшего обобщенного абстрагированного отражения действительности, обусловленного некоторыми мотивами, специфический процесс интеграции определенных представлений, понятий в конкретных условиях социального развития. Поэтому мысль как элемент высшей нервной деятельности представляет собой результат общественно-исторического развития индивида с выдвижением на передний план языковой формы переработки информации.

Творческое мышление человека связано с образованием все новых понятий. Слово как сигнал сигналов обозначает динамичный комплекс конкретных раздражителей, обобщенных в понятии, выраженном данным словом и имеющим широкий контекст с другими словами, с другими понятиями. В течение жизни человек непрерывно пополняет содержание формирующихся у него понятий расширением контекстных связей используемых им слов и словосочетаний. Любой процесс обучения, как правило, связан с расширением значения старых и образованием новых понятий.

Словесная основа мыслительной деятельности во многом определяет характер развития, становления процессов мышления у ребенка, проявляется в формировании и совершенствовании нервного механизма обеспечения понятийного аппарата человека на базе использования логических законов умозаключений, рассуждений (индуктивное и дедуктивное мышление). Первые речедвигательные временные связи появляются к концу первого года жизни ребенка; в возрасте 9—10 мес слово становится одним из значимых элементов, компонентов сложного стимула, но еще не выступает в качестве самостоятельного стимула. Соединение слов в последовательные комплексы, в отдельные смысловые фразы наблюдается на втором году жизни ребенка.

Глубина мыслительной деятельности, определяющая умственные особенности и составляющая основу человеческого интеллекта, во многом обусловлена развитием обобщающей функции слова. В становлении обобщающей функции слова у человека различают следующие стадии, или этапы, интегративной функции мозга. На первом этапе интеграции слово замещает чувственное восприятие определенного предмета (явления, события), обозначаемого им. На этой стадии каждое слово выступает в качестве условного знака одного конкретного предмета, в слове не выражена его обобщающая функция, объединяющая все однозначные предметы этого класса. Например, слово «кукла» для ребенка означает конкретно ту куклу, которая есть у него, но не куклу в витрине магазина, в яслях и т. д. Эта стадия приходится на конец 1-го — начало 2-го года жизни.

На втором этапе слово замещает несколько чувственных образов, объединяющих однородные предметы. Слово «кукла» для ребенка становится обобщающим обозначением различных кукол, которые он видит. Такое понимание и использование слова происходит к концу 2-го года жизни. На третьем этапе слово заменяет ряд чувственных образов разнородных предметов. У ребенка появляется понимание обобщающего смысла слов: например, слово «игрушка» для ребенка обозначает и куклу, и мяч, и кубик, и т. д. Такой уровень оперирования словами достигается на 3-м году жизни. Наконец, четвертый этап интегративной функции слова, характеризуемый словесными обобщениями второго-третьего порядка, формируется на 5-м году жизни ребенка (он понимает, что слово «вещь» обозначает интегрирующие слова предыдущего уровня обобщения, такие как «игрушка», «еда», «книга», «одежда» и т.д.).

Этапы развития интегративной обобщающей функции слова как составного элемента мыслительных операций тесно связаны с этапами, периодами развития познавательных способностей. Первый начальный период приходится на этап развития сенсомоторных координации (ребенок в возрасте 1,5—2 лет). Следующий — период предоперационального мышления (возраст 2— 7 лет) определяется развитием языка: ребенок начинает активно использовать сенсомоторные схемы мышления. Третий период характеризуется развитием когерентных операций: у ребенка развивается способность к логическим рассуждениям с использованием конкретных понятий (возраст 7—11 лет). К началу этого периода в поведении ребенка начинают преобладать словесное мышление, активация внутренней речи ребенка. Наконец, последний, завершающий, этап развития познавательных способностей — это период формирования и реализации логических операций на основе развития элементов абстрактного мышления, логики рассуждений и умозаключений (11—16 лет). В возрасте 15—17 лет в основном завершается формирование нейро- и психофизиологических механизмов мыслительной деятельности. Дальнейшее развитие ума, интеллекта достигается за счет количественных изменений, все основные механизмы, определяющие сущность человеческого интеллекта, уже сформированы.

Для определения уровня человеческого интеллекта как общего свойства ума, талантов широко используется показатель IQ1коэффициент умственного развития, вычисляемый на основании результатов психологического тестирования.

Поиски однозначных, достаточно обоснованных корреляций между уровнем умственных способностей человека, глубиной мыслительных процессов и соответствующими структурами мозга все еще остаются малоуспешными.

1 IQ — от англ. intellect quantity — количество интеллекта.

Даже такой, казалось бы, интегральный и объективный показатель, как масса головного мозга, не является определяющим. Так, многие выдающиеся умы отличались значительными различиями в общей массе мозга (мозг И. С. Тургенева весил 2012 г, И. П. Павлова — 1653 г, Д. И. Менделеева — 1571 г, А. Ф. Кони — 1100, г, А. Франса — 1017 г).

15.6. ВТОРАЯ СИГНАЛЬНАЯ СИСТЕМА

В процессе эволюции животного мира на этапе развития вида Homo sapiens произошло качественное видоизменение системы сигнализации, обеспечивающее адаптивное приспособительное поведение. Оно обусловлено появлением второй сигнальной системы — возникновением и развитием речи, суть которой заключается в том, что во второй сигнальной системе человека сигналы приобретают новое свойство условности — преобразуются в знаки в прямом смысле этого слова.

В первой сигнальной системе все формы поведения, включая способы и средства взаимного общения, базируются исключительно на непосредственном восприятии действительности и реакции на натуральные раздражители. Первая сигнальная система обеспечивает формы конкретно-чувственного отражения. При этом вначале в организме формируется ощущение отдельных свойств, предметов, явлений, воспринимаемых соответствующими рецепторными образованиями. На следующем этапе нервные механизмы ощущений усложняются, на их основе возникают другие, более сложные формы отражения — восприятия. И только с возникновением и развитием второй сигнальной системы появляется возможность осуществления абстрактной формы отражения образование понятий, представлений.

В отличие от условных рефлексов животных, отражающих окружающую действительность с помощью конкретных слуховых, зрительных и других сенсорных сигналов, раздражители второй сигнальной системы отражают окружающую действительность с помощью обобщающих, абстрагирующих понятий, выражаемых словами. В то время как животные оперируют лишь образами, формируемыми на основе непосредственно воспринимаемых сигнальных раздражителей, человек с его развитой второй сигнальной системой оперирует не только образами, но и связанными с ними мыслями, осмысленными образами, содержащими семантическую (смысловую) информацию. Раздражители второй сигнальной системы в значительной степени опосредованы мыслительной деятельностью человека.

Физическая структура знака не зависит от объекта, который он обозначает. Одни и те же явление, предмет, мысль могут быть выражены с помощью различных звукосочетаний и на разных языках. Словесные сигналы совмещают в себе два свойства: смысловое (содержание) и физическое (звучание в устной речи, очертание букв и слов — в письменной). С помощью слова осуществляется переход от чувственного образа первой сигнальной системы к понятию, представлению второй сигнальной системы.

Существенное отличие словесных сигналов от естественных сигналов первой сигнальной системы обусловлено особенностями лежащих в их основе безусловных раздражителей. У животных биологическое значение воспринимаемых сигналов обусловлено только характером последующего подкрепления, при этом связь между новым сигнальным раздражителем и подкрепляющим его раздражителем каждый раз вырабатывается заново. Сигнальное значение слова определяется всем коллективным опытом людей, пользующихся данной системой словесных знаков. Таким образом, информация, содержащаяся в самих словах, связана не с природой сигнализации явлений и предметов реальной действительности, а с отраженной, преломленной человеческим сознанием деятельностью.

Умение использовать знаковую систему языка позволяет человеку оперировать осознанными понятиями об окружающей среде и представлять любой предмет, любую ситуацию в форме мысленных моделей. Способность оперировать абстрактными понятиями, выражаемыми произнесенными или написанными словами, служит основой мыслительной деятельности и составляет сущность высшей формы абстрактно-обобщенного отражения окружающей действительности. Оперирование речью (устной или письменной) дает человеку огромные преимущества в адаптивно-приспособительном поведении, в познании и рациональном использовании окружающей природы или искусственной среды.

Функция речи включает в себя способность не только кодировать, но и декодировать данное сообщение при помощи соответствующих условных знаков, сохраняя при этом его содержательное смысловое значение. В отсутствие такого информационного моделирующего изоморфизма становится невозможным использование этой формы общения в межличностной коммуникации. Так, люди перестают понимать друг друга, если они пользуются разными кодовыми элементами (разными языками, недоступными всем участвующим в общении лицам). Такое же взаимное непонимание наступает и в том случае, если в одни и те же речевые сигналы закладывается разное смысловое содержание.

Система символов, используемая человеком, отражает наиболее важные перцептивные и символические структуры в системе коммуникации. Следует при этом заметить, что овладение языком существенно дополняет способность его к восприятию окружающего мира на базе первой сигнальной системы, составляя тем самым ту «чрезвычайную прибавку», о которой говорил И. П. Павлов, отмечая принципиально важное различие в содержании высшей нервной деятельности человека по сравнению с животными.

Слова как форма передачи мысли образуют единственную реально наблюдаемую основу речевой деятельности. В то время как слова, составляющие структуру конкретного языка, можно видеть и слышать, смысл, содержание их остаются за пределами средств непосредственного чувственного восприятия. Смысл слов определяется структурой и объемом памяти, информационным тезаурусом индивида. Смысловая (семантическая) структура языка содержится в информационном тезаурусе субъекта в форме определенного семантического кода, преобразующего соответствующие физические параметры словесного сигнала в его семантический кодовый эквивалент. При этом устная речь служит в качестве средства непосредственного прямого общения, письменная позволяет накапливать знания, информацию и выступает в качестве средства опосредованного во времени и пространстве общения.

В нейрофизиологических исследованиях речевой деятельности показано, что при восприятии слов, слогов и их сочетаний в импульсной активности нейронных популяций мозга человека формируются специфические паттерны с определенной пространственной и временной характеристикой. Использование разных слов и частей слов (слогов) в специальных опытах позволяет дифференцировать в электрических реакциях (импульсных потоках) центральных нейронов как физические (акустические), так и смысловые (семантические) компоненты мозговых кодов психической деятельности (Н. П. Бехтерева).

Наличие информационного тезауруса индивида и его активное влияние на процессы восприятия и переработки сенсорной информации являются существенным фактором, объясняющим неоднозначную интерпретацию входной информации в разные временные моменты и в разном функциональном состоянии человека. Для выражения любой смысловой структуры существует множество разнообразных форм представлений, например предложений. Известная фраза: «Он встретил ее на поляне с цветами»,—допускает три разных смысловых понятия (цветы у него в руках, у нее в руках, цветы на поляне). Одни и те же слова, словосочетания также могут означать разные явления, предметы (бор, ласка, коса и т. д.).

Языковая форма коммуникации как ведущая форма обмена информацией между людьми, ежедневное использование языка, где лишь немногие слова имеют точный однозначный смысл, во многом способствует развитию у человека интуитивной способности мыслить и оперировать неточными размытыми понятиями (в качестве которых выступают слова и словосочетания — лингвистические переменные). Человеческий мозг в процессе развития его второй сигнальной системы, элементы которой допускают неоднозначные отношения между явлением, предметом и его обозначением (знаком — словом), приобрел замечательное свойство, позволяющее человеку действовать разумно и достаточно рационально в условиях вероятностного, «размытого» окружения, значительной информационной неопределенности. Это свойство основано на способности манипулировать, оперировать неточными количественными данными, «размытой» логикой в противоположность формальной логике и классической математике, имеющим дело только с точными, однозначно определенными причинно-следственными отношениями. Таким образом, развитие высших

Рис.15.8. Локализация центральных частей анализатора словесных сигналов в коре большого мозга человека. Центры Брока (1); центр артикуляции речи (2); центр контроля движения руки при письме (3); центр анализа звуков речи (4); центр Вернике (5); центр письменных словесных сигналов (6); центр зрительного анализатора (7).

отделов мозга приводит не только к возникновению и развитию принципиально новой формы восприятия, передачи и переработки информации в виде второй сигнальной системы, но функционирование последней в свою очередь результируется в возникновении и развитии принципиально новой формы мыслительной деятельности, построении умозаключений на базе использования многозначной (вероятностной, «размытой») логики, Человеческий мозг оперирует «размытыми», неточными терминами, понятиями, качественными оценками легче, чем количественными категориями, числами. По-видимому, постоянная практика использования языка с его вероятностным отношением между знаком и его денотатом (обозначаемым им явлением или предметом) послужила прекрасной тренировкой для человеческого ума в манипулировании нечеткими понятиями. Именно «размытая» логика мыслительной деятельности человека, основанная на функции второй сигнальной системы, обеспечивает ему возможность эвристического решения многих сложных проблем, которые невозможно решать обычными алгоритмическими методами.

Функция речи осуществляется определенными структурами коры большого мозга. Двигательный центр речи, обеспечивающий устную речь, известный как центр Брока, расположен у основания нижней фронтальной извилины (рис. 15.8). При повреждении этого участка мозга наблюдаются расстройства двигательных реакций, обеспечивающих устную речь.

Акустический центр речи (центр Вернике) находится в области задней трети верхней височной извилины и в прилегающей части — надкраевой извилине (gyrus supramarginalis). Повреждение этих областей приводит к потере способности понимать смысл услышанных слов. Оптический центр речи расположен в угловой извилине (gyrus angularis), поражение этого участка мозга лишает возможности узнавать написанное.

Левое полушарие ответственно за развитие отвлеченного логического мышления, связанного с преимущественной обработкой информации на уровне второй сигнальной системы. Правое полушарие обеспечивает восприятие и переработку информации, преимущественно на уровне первой сигнальной системы.

Несмотря на указанную определенную левополушарность локализации центров речи в структурах коры большого мозга (и как результат — соответствующие нарушения устной и письменной речи при их повреждении) следует отметить, что нарушения функции второй сигнальной системы обычно наблюдаются и при поражении многих других структур коры и подкорковых образований. Функционирование второй сигнальной системы определяется работой целостного мозга.

Среди наиболее распространенных нарушений функции второй сигнальной системы различают агнозию — потерю свойства узнавания слов (зрительная агнозия наступает при поражении затылочной зоны, слуховая агнозия — при повреждении височных зон коры большого мозга), афазию — нарушение речи, аграфию — нарушение письма, амнезию — забывание слов.

Слово как основной элемент второй сигнальной системы превращается в сигнал сигналов в результате процесса обучения и общения ребенка со взрослыми. Слово как сигнал сигналов, с помощью которого осуществляются обобщение и абстракция, характеризующие человеческое мышление, стало той исключительной особенностью высшей нервной деятельности, которая обеспечивает необходимые условия прогрессивного развития человеческого индивидуума. Способность произносить и понимать слова развивается у ребенка в результате ассоциации определенных звуков — слов устной речи. Пользуясь языком, ребенок меняет способ познания: на смену чувственного (сенсорного и моторного) опыта приходит оперирование символами, знаками. Обучение уже не требует обязательного собственного чувственного опыта, оно может происходить опосредованно с помощью языка; чувства и действия уступают место слову.

В качестве комплексного сигнального раздражителя слово начинает формироваться во второй половине первого года жизни ребенка. По мере роста и развития ребенка, пополнения его жизненного опыта расширяется и углубляется содержание используемых им слов. Основная тенденция развития слова заключается в том, что оно обобщает большое количество первичных сигналов и, отвлекаясь от их конкретного разнообразия, делает заключенное в нем понятие все более абстрактным.

Высшие формы абстракции в сигнальных системах мозга обычно ассоциируются с актом художественной, творческой деятельности человека, в мире искусства, где продукт творчества выступает как одна из разновидностей кодирования и декодирования информации. Еще Аристотель подчеркивал неоднозначный вероятностный характер информации, содержащейся в художественном произведении. Как и всякая другая знаковая сигнальная система, искусство имеет свой специфический код (обусловленный историческими и национальными факторами), систему условностей.. В плане общения информационная функция искусства позволяет людям обмениваться мыслями и опытом, дает возможность человеку приобщиться к историческому и национальному опыту других, далеко отстоящих (и во временном, и в пространственном отношении) от него людей. Лежащее в основе творчества знаковое или образное мышление осуществляется путем ассоциаций, интуитивных предвосхищений, через «разрыв» в информации (П. В. Симонов). С этим, видимо, связано и то обстоятельство, что многие авторы художественных произведений, художники и писатели обычно приступают к созданию произведения искусства в отсутствие предварительных четких планов, когда неясной представляется им конечная форма продукта творчества, воспринимаемого другими людьми далеко не однозначно (особенно если это произведение абстрактного искусства). Источником многогранности, многозначности такого художественного произведения служит недосказанность, дефицит информации, особенно для читателя, зрителя в плане понимания, интерпретации произведения искусства. Об этом говорил Хемингуэй, сравнивая художественное произведение с айсбергом: лишь небольшая часть его видна на поверхности (и может восприниматься всеми более или менее однозначно), большая и существенная часть скрыта под водой, что предоставляет зрителю и читателю широкое поле для воображения.

15.7. ПРИНЦИП ВЕРОЯТНОСТИ И «РАЗМЫТОСТИ» В ВЫСШИХ ИНТЕГРАТИВНЫХ ФУНКЦИЯХ МОЗГА

Эффективность адаптивного поведения человека в значительной степени обусловлена уникальной способностью его мозга предвидеть, прогнозировать наступление определенных событий, а значит, соответствующим образом подготовиться к ним. Образование условного рефлекса — один из ведущих приемов формирования приспособительного поведения животного и человеческого организма — представляет собой физиологический феномен преобразования неопределенной информации в определенную, т. е. реакцию на уменьшение неопределенности в среде.

Прогнозирование на основе прошлого опыта не может быть абсолютным, прогнозирование всегда носит вероятностный характер. Под вероятностным прогнозированием понимается предвосхищение будущего, основанное на усвоении вероятностной структуры прошлого опыта и восприятии информации о реально существующей ситуации. На основе вероятностного прогноза осуществляется подготовка к таким действиям, которые в наибольшей степени (с максимальной вероятностью) способствуют достижению цели.

Способность к вероятностному прогнозу является результатом эволюции живых организмов в условиях вероятностно организованной среды. Прогнозы живого организма направлены на оптимизацию результатов его действий. Поскольку в естественных условиях организм сталкивается с множеством различных случайных воздействий, для построения рационального прогноза необходима соответствующая статистическая обработка этих сигналов. Современные теории вероятностного обучения основаны на представлении о предсказании статистических закономерностей и вы боре оптимальных стратегий поведения при обучении субъекта распознаванию вероятностной структуры раздражителей.

Поведенческие реакции организма в соответствии с вероятностным прогнозом позволяют ему резко уменьшить число ошибочных реакций, следовательно, являются эффективным средством активного приспособления к окружающей среде.

В условиях неопределенного прогноза организм выполняет работу по подготовке к нескольким возможным действиям. Это соответствует ориентировочной реакции организма на неопределенность ситуации. Чем больше неопределенность прогноза, тем больше физиологических систем вынужден подготовить к действию организм, тем более сильную ориентировочную реакцию мы наблюдаем. Напротив, условно-рефлекторную реакцию следует рассматривать как ответ, организуемый на базе индивидуального опыта человека и позволяющий прогнозировать появление в будущем некоторой определенной ситуации. Условно-рефлекторная реакция организма проявляется всегда в ситуации определенного прогноза, ориентировочная реакция — в условиях неопределенного прогноза.

Характерной особенностью многих приобретаемых навыков является то, что они формируются в условиях стохастической внешней среды, когда вероятность одновременного наступления во времени и в пространстве двух разных стимулов почти всегда меньше единицы, и тем не менее через некоторое время в центральных нервных структурах, отвечающих за определенные поведенческие реакции, формируется функциональная связь. Это в полной мере относится к механизму образования условного рефлекса, наиболее распространенной ситуацией образования которого в реальных условиях жизни живого организма является положение, когда вероятность подкрепления условного стимула безусловным почти никогда не достигает единицы, а сама последовательность подкрепляемых условных стимулов носит случайный характер.

Вероятностный компонент реакции занимает значительное место на всех этапах условно-рефлекторного акта, состоящего из ряда последовательно протекающих процессов в периферических, афферентно-эфферентных и центральных ассоциативных системах (А. Б. Коган, О. Г. Чораян).

Вероятностная природа закономерностей формирования условно-рефлекторной деятельности хорошо проявляется в опытах с нерегулярным подкреплением условного стимула безусловным. Результаты образования условных рефлексов, выработанных на раздражения, подкрепленные стереотипно или стохастически, указывают на отсутствие сколько-нибудь существенных различий в скорости формирования этих приспособительных ответов. В экспериментах по выработке двигательных условных рефлексов с частичным подкреплением установлено, что рефлекс вырабатывается тем лучше, чем выше вероятность подкрепления условного раздражителя безусловным. Решение многих задач повседневной жизни человека, связанных с хранением и воспроизведением информации (таких как распознавание образа, разработка оптимальной стратегии поведения, различные формы мыслительной деятельности), как правило, происходит при нечетких условиях, в ситуациях, недоступных точному количественному описанию. Одним из перспективных методических подходов к анализу и познанию неточно определенных, трудно формализуемых систем является теория «размытых» множеств и «размытых» алгоритмов, представляющая собой логическое развитие концепции вероятностного детерминизма явлений и процессов в сложных и сверхсложных системах. Теория «размытых» множеств и «размытых» алгоритмов в сущности есть попытка создания концептуальной основы для оперирования «размытыми» понятиями, «размытыми» представлениями в количественном или квазиколичественном плане.

В жизни человека число проблем, решаемых с большей точностью, намного меньше, чем тех, которые могут практически решаться лишь приблизительно. Неточность, неопределенность в системе, известная под названием «размытость», играет существенную роль в человеческом сознании, так как большинство явлений реального мира являются размытыми, одни в большей, другие в меньшей степени. Умение правильно решать неформализуемые проблемные ситуации — важнейшая черта человеческого интеллекта — в основном обусловлена способностью человеческого мозга оперировать неколичественными терминами, нечеткими понятиями. Оперирование нечеткими понятиями является не слабостью, а силой, одним из самых больших приобретений человека, возникших в процессе эволюции живого мира. Решение, принятое приблизительно, грубо, но вовремя, предпочтительнее вывода, который взвешен, выверен, вычислен, но отстал от событий. Человек наращивает нечеткость понятий, когда желает проявить осторожность и не делать опрометчивых суждений. Усиление расплывчатости — часто используемый людьми прием, когда другими способами вообще невозможно решение стоящей перед ним задачи.

Принцип «размытости» лежит в основе многих форм сознательной интеллектуальной деятельности, в особенности в процессах распознавания образов, в логических операциях мышления, в устной и письменной речи и т. д. Видимо, вопросы точной оценки, абсолютного измерения имеют скорее теоретическое значение, а в практической деятельности человека необходима лишь приблизительная оценка ситуации, отдельных составляющих ее компонентов. Мозг человека допускает такую неточность, кодируя информацию, достаточную для решения задачи элементами теории «размытых» множеств, при помощи которых он лишь приблизительно оценивает исходные данные.

В повседневной жизни человек постоянно сталкивается с ситуациями, когда стратегия его поведения не может, а возможно, и не нуждается в точной регламентации. Об этом достаточно хорошо сказал Н. Винер, подчеркнувший, что главное из преимуществ человеческого мозга перед вычислительной машиной заключается в его способности оперировать нечетко очерченными понятиями. Если бы человек использовал для решения проблемных ситуаций точные алгоритмы, то во многих случаях его работа сделалась бы невозможной, так как решение сложных информационных задач при помощи таких алгоритмов требует чрезвычайно большого объема информации, огромных объемов памяти и длительного времени для переработки информации.

Замечательное свойство человеческого мозга оперировать нечеткими, плохо формализованными понятиями, во многом обусловлено ролью в его жизни такой ведущей формы описания (кодирования) информации, каким являются естественные языки. Известно, что отличительной особенностью человеческого языка является неоднозначное отношение между знаком и обозначаемым им предметом. По классификации В. В. Налимова, система языков как различная форма кодирования информации составляет весьма протяженную шкалу, один конец которой занят «тяжелыми» языками, другой — «мягкими». В «тяжелых» языках каждый знак имеет четкое и определенное значение различных математических или логических операций, например программные языки современных ЭВМ. Напротив, в «мягких» языках вероятностная структура содержания, обозначаемого данным языком, проявляется особенно хорошо. Крайним образцом «мягкого» языка может служить язык абстрактного искусства. На языковой шкале кодирования и декодирования информации современный разговорный или письменный язык занимает среднее положение. Этим и объясняется тот факт, что в теории «размытых» множеств большое место занимает лингвистический подход, оперирующий лингвистическими переменными, представляющими собой обозначения размытых классов явлений и предметов.

15.8. МЕЖПОЛУШАРНАЯ АСИММЕТРИЯ

Одним из основных принципов функционирования полушарий большого мозга является асимметрия. Межполушарная асимметрия как одна из важных особенностей функционирования высших отделов мозга в основном определяется двумя моментами: 1) асимметричной локализацией нервного аппарата второй сигнальной системы и 2) доминированием правой руки как мощного средства адаптивного поведения человека. Этим и объясняется, что первые представления о функциональной роли межполушарной асимметрии возникли лишь тогда, когда удалось установить локализацию нервных центров речи (моторного — центра Брока и сенсорного — центра Вернике в левом полушарии). Перекрестная проекция видов сенсорной чувствительности и нисходящих пирамидных путей — регуляторов моторной сферы организма — в сочетании с левосторонней локализацией центра устной и письменной речи определяет доминирующую роль левого полушария в по ведении человека, управляемого корой больших полушарий. Полученные экспериментальные данные подтверждают представление о доминирующей роли левого полушария мозга в реализации функций второй сигнальной системы, в мыслительных операциях, в творческой деятельности с преобладанием форм абстрактного мышления. В общем виде можно считать, что люди с левополушарным доминированием относятся к мыслительному типу, а с правополушарным доминированием — к художественному.

По данным современной нейро- и психофизиологии, левое полушарие большого мозга у человека специализируется на выполнении вербальных символических, правое — на обеспечении и реализации пространственных, образных функций. В этом проявляется важнейшая форма функциональной асимметрии мозга — асимметрия психической деятельности. Повреждения, дисфункция левой височной области коры приводят обычно к существенным нарушениям в моторной реализации функции языка: наблюдаются элементы заикания, нечеткое произношение и т. д.; повреждения в правой височной области приводят к нарушению в четкости образного восприятия и представления внешних стимулов, явлений, предметов; при стимуляции этой зоны у больных возникают обычно очень яркие образы, воспоминания. Установлено, что правое полушарие быстрее обрабатывает информацию, чем левое. Результаты пространственного зрительного анализа раздражителей в правом полушарии передаются в левое полушарие в центр речи, где происходят анализ смыслового содержания стимула и формирование осознанного восприятия.

Человек с преобладанием правого полушария предрасположен к созерцательности и воспоминаниям, он тонко и глубоко чувствует и переживает, но медлителен и малоразговорчив. Доминирование левого полушария ассоциируется у человека с большим словарным запасом, активным его использованием, с высокой двигательной активностью, целеустремленностью, высокой способностью экстраполяции, предвидения, прогнозирования. Отмечены определенные различия и в типах мыслительных операций (умозаключений) у людей с доминированием правого или левого полушария (В. Л. Бианки). В процессах обучения, познания правое полушарие реализует процессы дедуктивного мышления (вначале осуществляются процессы синтеза, а затем анализа). Левое полушарие преимущественно обеспечивает процессы индуктивного мышления (вначале осуществляется процесс анализа, а затем синтеза). Некоторые различия межполушарной асимметрии при зрительном восприятии приведены в табл. 15.1.

В исследованиях установлены феноменологические особенности межполушарной асимметрии в динамике образования условного рефлекса, формирования определенного навыка. Несмотря на то что межполушарное взаимодействие препятствует совершенствованию, укреплению условного рефлекса, на начальных стадиях это взаимодействие принимает определенное участие в образовании условного рефлекса. При этом благодаря активации тормозных

Таблица 15.1. Межполушарные различия зрительного восприятия (по Л. И. Леушиной и др.)

Характеристики зрительного восприятия

Левое полушарие

Правое полушарие

Лучше опознаются стимулы

Вербальные

Легко различимые

Знакомые

Невербальные

Трудно различимые

Незнакомые

Лучше воспринимаются задачи

Оценка временных отношений

Установление сходства Установление идентичности стимулов по названиям

Переход к вербальному кодированию

Оценка пространственных отношений

Установление различий Установление физической идентичности стимулов Зрительно-пространственный анализ

Особенности процессов восприятия

Аналитическое восприятие Последовательное восприятие Абстрактное, обобщенное, инвариантное узнавание

Целостное восприятие (гештальт)

Одновременное восприятие Конкретное узнавание

Предполагаемые морфологические различия

Фиксированное представительство элементарных функций

Диффузное представительство

влияний симметричных зон коры через мозолистое тело стимулируется образование условно-рефлекторной связи; в случае закрепления рефлекса доминирующее полушарие мозга тормозит проявления условно-рефлекторной памяти (Г. А. Кураев).

Синтетическая доминантная модель межполушарных взаимоотношений базируется на принципах симметрии и доминанты (рис. 15.9). В проекционных зонах коры преимущественно реализуется принцип гомотопичности, а в ассоциативных — гетеротопичности (В. Л. Бианки). Главная роль транскаллозальных коммуникаций в проекционных зонах заключается в обмене сенсорной информацией, а в ассоциативных — в регуляции уровня возбудимости симметричных областей. Гомотопические связи в корковых структурах образуют как бы канву, на которой внутриполушарные влияния как бы выписывают свой асимметрический узор. В формировании внутрицентрального взаимодействия симметричных зон мозга важную роль играют процессы цитохимической дифференцировки, модулирующие сенсорную информацию. Рост и развитие нервных волокон в мозге, а их объединение в цепи находятся под генетическим контролем с использованием сложных химических кодов (Сперри).

Функциональная межполушарная асимметрия, реализующая в своей динамике принцип доминанты, рассматривается как саморегулирующаяся система с обратной тормозной связью. Эта система состоит из связанных между собой первичных и вторичных доминантных очагов, образующихся и поддерживающихся за счет восходящих внутриполушарных и межполушарных потоков возбуждения, а также гуморальных влияний. При этом в доминирующем полушарии под влиянием восходящих внутриполушарных и межполушарных, а также гуморальных воздействий формируется стойкий очаг повышенной возбудимости, способный к суммированию возбуждения, обладающий известной инерционностью и оказывающий тормозящее действие на недоминирующее полушарие

Рис. 15.9. Межполушарные взаимоотношения (по В. Л. Бианки; схема).

Вверху — ассоциативная кора, внизу — проекционная; слева — левое полушарие, справа — правое; жирные стрелки — доминирующие влияния, тонкие стрелки — недоминирующие, белые стрелки — облегчающие влияния, прерывистые — тормозящие; 1,5 — транскаллозальные влияния; 2, 7, 10 — восходящие афферентные влияния; 3, 8 — дивергенция возбуждения; 4 — конвергенция; 6 — экстракаллозальные влияния; 9 — межзональные транскаллозальные влияния; 11—межзональные внутриполушарные влияния; 12, 13 — транскаллозальные облегчающие влияния; 14, 15—транскаллозальные тормозящие влияния; 16 — экстракаллозальные облегчающие влияния; 17 — экстракаллозальные тормозящие влияния.

Передача межполушарных влияний осуществляется главным образом по мозолистому телу, но определенное значение имеют и экстракаллозальные пути. В соответствии с индуктивно-дедуктивной гипотезой правое полушарие осуществляет дедуктивную обработку информации, а левое — индуктивную (в правом полушарии доминируют процессы синтеза, а в левом — процессы анализа). В общем виде схема межполушарного взаимодействия сводится к следующей последовательности аналитико-синтетической деятельности полушарий большого мозга. Сначала правое полушарие посредством дедуктивного метода (от общего к частному, от синтеза к анализу) оперативно оценивает ситуацию, затем левое полушарие на основе индуктивного метода (от частного к общему, от анализа к синтезу) вторично формирует представление об общей закономерности и разрабатывает соответствующую стратегию поведения. Результаты этого процесса передаются в противоположное полушарие в основном по системе волокон мозолистого тела.

Как образно подчеркивает В. Л. Бианки, левое полушарие обладает «законодательной властью, а правое — исполнительной», левое полушарие определяет цели, а правое реализует их выполнение.

15.9. ВЛИЯНИЕ ДВИГАТЕЛЬНОЙ АКТИВНОСТИ НА ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ ЧЕЛОВЕКА

15.9.1. Общие физиологические механизмы влияния двигательной активности на обмен веществ

Двигательная активность является необходимым условием поддержания нормального функционального состояния человека.

Во время движения происходит раздражение проприорецепторов скелетных мышц, интерорецепторов внутренних органов и рефлекторно через ЦНС стимулируются жизненные процессы в клетках, тканях, органах, составляющих различные функциональные системы организма. Повышается обмен веществ и как следствие — кислородный запрос. В зависимости от интенсивности и объема движений потребление О2 возрастает от 250—300 мл/мин (в покое) до 5—6 и в редких случаях до 7,2—7,5 л/мин. Усиливаются катаболизм и анаболизм в субклеточных структурах, что приводит к обновлению клеток и росту их биоэнергетического потенциала. И. П. Павлов указывал, что для сохранения жизнедеятельности каждая клетка должна интенсивно функционировать, так как при этом происходит более полноценное восстановление ее исходных ресурсов.

Двигательная деятельность рефлекторно активизирует гормональные механизмы регуляции. Особое значение имеет гормон передней доли гипофиза АКТГ, выделение которого стимулируется афферентными влияниями через кору больших полушарий на гипоталамус, гипофиз. АКТГ способствует выделению в корковом веществе надпочечников глюкокортикоидов. Активация мозгового вещества надпочечников вызывает выделение катехоламинов. Те в свою очередь вызывают повышение в крови содержания субстратов энергетического обмена — глюкозы и др. Выделение инсулина поджелудочной железой обеспечивает высокий уровень углеводного обмена, усиливает процесс утилизации глюкозы в мышечной ткани. Гормоны щитовидной железы повышают уровень всех видов обмена, особенно жирового.

15.9.2. Вегетативное обеспечение двигательной активности

Вегетативное обеспечение двигательной деятельности осуществляется прежде всего системами кровообращения, дыхания, крови и регуляторными влияниями нервно-гормональных механизмов.

Мощная афферентация, поступающая в процессе двигательной деятельности от проприорецепторов мышц, суставов, связок, рецепторов внутренних органов, направляется в кору больших полушарий. На этой основе кора формирует функциональную систему, объединяющую отдельные структуры головного мозга, все моторные уровни ЦНС и избирательно мобилизирующую отдельные мышечные группы. Одновременно нейрогенное звено управления воздействует на центры, регулирующие кровообращение, дыхание, другие вегетативные функции, гормональное звено.

Сердечно-сосудистая система. Интенсификация деятельности сердца обеспечивает повышение работы сердца. Частота сердечных сокращений увеличивается с 60—80 (в покое) до 120—220 в минуту, ударный объем — с 60—80 до 100—150 мл, минутный объем сердца — с 4—5 до 25—30, максимум до 40 л в зависимости от мощности и продолжительности двигательной активности. Высокие величины работы сердца обусловлены повышением АД, увеличением скорости тока крови, объема циркулирующей крови, притока крови к правым отделам сердца (В. С. Фарфель, Т. П. Конради). Работающие мышцы при этом снабжаются кислородом в 10— 15 раз интенсивнее, чем в покое. Хронотропная реакция сердца определяется интенсивностью двигательной активности. Выраженная хронотропная реакция сердца приводит к преимущественному укорочению диастолы желудочков и может лимитировать кровоснабжение миокарда.

Начальная вазоконстрикция во время физических усилий сменяется вазодилататорным эффектом. Накопленные продукты обмена (СО2, молочная кислота, АДФ) вызывают расширение сосудов.

Систематические занятия физическими упражнениями, особенно спортом, со временем приводят к экономизации деятельности сердца как в покое, так и при нагрузке. Сердце тренированного человека обладает большими резервами, чем сердце человека, не занимающегося систематическими физическими упражнениями, и охарактеризовано Г. Ф. Лангом как «спортивное» сердце. «Спортивное» сердце отличается редким ритмом (брадикардия менее 60 в минуту) в покое, небольшой гипертрофией и увеличением количества капилляров миокарда, при этом возрастают скорость и амплитуда сокращения, а также скорость и величина диастолического расслабления. За счет увеличения массы сердца общая его работа в условиях покоя на 40 % экономичнее, чем у нетренированного. На 100 г массы миокарда сердце потребляет в 2 раза меньше энергии, чем у нетренированного. В основе роста резервов миокарда лежат повышение мощности кальциевого насоса в саркоплазматической сети, увеличение количества митохондрий и активности ферментов, ответственных за транспорт субстратов окисления. Имеет значение прирост растяжимости сердечной мышцы и объема сердца. Соответственно увеличивается ударный объем сердца.

При систематических занятиях физическими упражнениями постепенно (в два этапа) наступает приспособление деятельности сердца к физическим нагрузкам. Функциональный этап отражает изменение основных физиологических характеристик сердца (частота сердечных сокращений, ударный объем) во время двигательной деятельности. Морфологический этап отражает соответствующие изменения (перестройки) в структурах самого сердца (гипертрофия, увеличение количества капилляров и др.).

Оздоровительное влияние двигательной активности на сердечно-сосудистую систему проявляется в снижении темпа склерозирования сосудов, которое обусловлено в определенной степени отложением в их стенках холестерина. Чем выше концентрация холестерина в плазме крови, тем больше опасность развития атеросклероза. Гиперхолестеринемия 6—7 ммоль/л (против 3,5— 3,9 ммоль в норме) приводит к быстрому развитию атеросклероза. Склерозированные сосуды имеют узкий просвет и неадекватно реагируют на нервные и гуморальные стимулы, что обусловливает нарушение кровотока и лимитирование кровоснабжения органов. Десятиминутная двигательная активность в виде физических упражнений способствует снижению уровня холестерина в крови. Особенно выражено этот эффект проявляется при длительной двигательной активности в виде бега. Увеличенное потребление О2 организмом приводит к извлечению из жировых депо липидов и их расщеплению в процессе обмена веществ (И. В. Муравов). Приобщение человека к организованной двигательной активности на ранних этапах онтогенеза физиологически обосновано, поскольку установлено, что у 50 % детей в возрасте 10—11 лет обнаруживается гиперхолестеринемия.

Дыхание и кровь. Функциональная система, обеспечивающая реализацию двигательной деятельности, включает определенные параметры дыхания и крови. В момент начала движений в первую очередь активизируется дыхание. Оно учащается и углубляется. Дыхательные мышцы сохраняют тесную функциональную связь со скелетными мышцами, деятельность которых рефлекторно через дыхательный центр возбуждает дыхательные мышцы. При этом увеличиваются дыхательная поверхность легких, частота, глубина, минутный объем дыхания, эффективная альвеолярная вентиляция легких, а также утилизация О2 из альвеолярного воздуха с 3—4 до 4—5 %. Усиление дыхательных экскурсий обеспечивает повышенный приток крови к сердцу. В результате координированной деятельности сердечно-сосудистой и дыхательной систем оптимизируются процессы доставки О2 в ткани. Дыхательная поверхность крови увеличивается за счет относительного эритроцитоза, а также за счет усиления эритропоэтической функции красного костного мозга. Кислородная емкость крови может незначительно (на 1—2 %) превышать стандартную величину (18— 20 %). Вследствие усиленной утилизации О2 в тканях повышается артериовенозная разница по кислороду. При длительной и интенсивной двигательной активности выделяющиеся в кровь из работающих мышц и внутренних органов продукты обмена через хеморецепторы рефлексогенных зон возбуждают дыхательный центр. При предельных двигательных усилиях у тренированных спортсменов высокого класса частота дыхания достигает 60 в минуту, а глубина дыхания — 50 % от жизненной емкости легких.

Функциональный этап в тренировке дыхательной системы проявляется во время разовой ежедневно повторяющейся двигательной активности, затем фиксируется в ЦНС в виде динамического стереотипа с проявлением феномена экономизации дыхания в условиях покоя. Частота дыхания по мере выполнения физических упражнений урежается с 16—20 у не занимающихся физической культурой людей до 11—14 в минуту, становятся более выраженными различия в продолжительности вдоха и выдоха. При систематической интенсивной двигательной деятельности количество эритроцитов в крови оказывается ниже стандартной величины. При длительных двигательных упражнениях в виде бега, особенно на дальние дистанции, развивается миогенный лейкоцитоз.

Согласно теории «энергетического правила скелетных мышц» И. А. Аршавского, состояние вегетативных функций непосредственно зависит от уровня двигательной активности.

15.9.3. Влияние двигательной активности на регуляторные механизмы ЦНС и гормонального звена

И. П. Павлов отмечал, что двигательная деятельность приносит человеку «мышечную радость». Во время движений ЦНС перерабатывает большой объем информации, связанный с проприоцептивной афферентацией от мышц. Функциональное состояние всех отделов ЦНС, в том числе коры больших полушарий и подкорковых центров, повышается. Активизируются и балансируются возбудительный и тормозной процессы. Укорачивается время двигательной реакции на звуковые и световые раздражители, повышается частота усвоения ритма раздражений, усиливается выраженность альфа-ритма в состоянии покоя. В клетках коры больших полушарий увеличивается содержание РНК, имеющей непосредственное отношение к механизмам памяти. Усиливаются ассоциативные процессы, возникают «озарения», составляющие физиологическую основу экстраполяции (творчества). За счет корковых посылок и рефлекторных влияний с периферии активизируется деятельность гипоталамо-гипофизарной системы. При этом в реакцию вовлекается эндокринная система и достигается оптимальная (соответственно уровню двигательной активности) регуляция гемодинамики, дыхания, кроветворения, выделительной функции почек, кишечника, дезинтоксикационной функции печени. Во время бега и других видов двигательной активности в кровь выделяются гормоны, эндорфины. Они уменьшают уровень тревожности, подавляют чувство страха, боли и голода.

За счет увеличения функциональных резервов организма повышается его жизненный тонус. Возрастают устойчивость к стрессорным факторам, физическая и психическая работоспособность.

15.9.4. Влияние двигательной активности на функции нервно-мышечного аппарата

В зависимости от характера двигательной активности скелетные мышцы человека могут работать в динамическом, статическом и смешанном режимах. Во время движения в связи с повышением уровня обмена веществ в соответствии с правилом А. Крога в мышцах увеличивается число открытых капилляров. Увеличенный приток крови к мышцам способствует повышению их температуры, что обусловливает уменьшение вязкости (силы трения между отдельными волокнами), а следовательно, облегчает реализацию физико-химических свойств мышц, непосредственно влияющих на производительность совершаемой работы. При статических усилиях сосуды мышц сдавливаются находящимися в состоянии напряжения волокнами, кровообращение в мышце почти прекращается. То небольшое количество О2, которое находится в составе миоглобина, не может поддерживать аэробный режим энергообеспечения, в связи с чем преобладает анаэробный режим с использованием креатинфосфокиназной реакции и гликолитического фосфорилирования.

Систематическая двигательная деятельность вызывает рабочую гипертрофию мышечных волокон, увеличение емкости капиллярной сети в мышцах, содержания миоглобина, гликогена, АТФ, КФ, дыхательных ферментов. В волокнах повышается количество митохондрий. Последние способствуют возрастанию способности мышц утилизировать пируват. При этом ограничивается накопление молочной кислоты и обеспечивается возможность мобилизации жирных кислот, повышается способность к интенсивной и длительной мышечной работе. Параллельно наступают изменения в центральном звене двигательных единиц — в α-мотонейронах, которые гипертрофируются при одновременном увеличении содержания в них дыхательных ферментов. При статическом режиме деятельности мышц в них происходит более глубокая перестройка сосудистой системы и нервных окончаний: капилляры изменяют ход — идут не параллельно мышечным волокнам, а оплетают их, аксоны нейронов двигательных единиц делятся на большее количество терминален, подходящих к мышечным волокнам. Надежность функционирования опорно-двигательного аппарата возрастает за счет увеличения поперечника трубчатых костей и утолщения их компактного вещества.

По мере повторения моторных нагрузок двигательная функциональная система приобретает все большую надежность деятельности. Это выражается в совершенствовании координации, автоматизации и экономичности движений. В основе этого лежат расширение межцентральных связей различных моторных уровней коры больших полушарий, стриопаллидарной системы, среднего, продолговатого мозга, а также формирование динамического стереотипа с высокой помехоустойчивостью.

Научно обоснованная двигательная деятельность в виде занятий физической культурой способствует правильному формированию осанки, адекватному развитию мышечного «корсета» в период интенсивного роста, особенно в пубертатный период, характеризующийся ростовым скачком.

15.9.5. Физиологическое значение тренированности

Тренировка преследует цель оздоровления. Основным ее методом является использование разного характера и направленности двигательной деятельности как средства для повышения и сохранения высокого функционального состояния человека. В результате тренировки в организме человека происходят адаптационные морфологические и функциональные изменения, вначале по типу срочной адаптации на разовые нагрузки. При повторении мышечных нагрузок развивается долговременная адаптация. Срочная адаптация обеспечивается эволюционно детерминированными реакциями, протекающими на уровне максимальных значений затрат физиологических резервов. Срочная адаптация формирует морфофункциональную основу долговременной адаптации. Устойчивая долговременная адаптация к физическим нагрузкам есть тренированность. Она характеризуется высоким функциональным потенциалом и способностью реализовать его на высоком уровне экономичности в зависимости от нагрузки. Тренированный человек отличается от нетренированного (не занимающегося физической культурой) хорошей осанкой, большей устойчивостью к факторам риска.

Возможность достижения высокого уровня тренированности зависит от наследственных особенностей биохимических и физиологических процессов, функциональной активности ЦНС, нейро-гуморальных регуляций.

В адаптации организма к двигательной деятельности принимает непосредственное участие иммунная система. Развитие тренированности обеспечивается согласованной деятельностью нервной, эндокринной и иммунной систем.

Из практики «большого» спорта известно, что большие физические нагрузки могут вызывать иммунодепрессию вплоть до снижения иммунного ответа и в определенном проценте случаев феномена «исчезающих» антител. В этот период организм оказывается слабо защищенным от различных заболеваний. Наиболее часто нарушение иммунного статуса связано с ослаблением синтеза иммунного белка гамма-интерферона, изменением цитоплазматической мембраны лимфоцитов, последовательным угнетением Т-системы лимфоцитов и уменьшением их функциональной активности. Интерферонодепрессия является маркером психоэмоционального стресса.

15.10. ОСНОВЫ ФИЗИОЛОГИИ УМСТВЕННОГО И ФИЗИЧЕСКОГО ТРУДА

15.10.1. Физиологическая характеристика умственного труда

Умственный труд состоит в переработке ЦНС различных видов информации в соответствии с социальной и профессиональной направленностью индивидуума. В процессе переработки информации происходят сличение с имеющейся в памяти информацией и ее интеграция. Интеграция новой информации, с одной стороны, обогащает память, с другой — лежит в основе принятия решений, направленных на формирование творческих программ двигательных действий, бытовых, трудовых процессов. Умственная деятельность пронизывает все сферы активности человека. Ее эффективность определяется высоким функциональным состоянием нейронов ЦНС, широтой связей между ними, энергетическим обеспечением нейронов и глиальных элементов, активностью медиаторной системы, адекватным уровнем активности кровоснабжения структур мозга и гормональными влияниями.

Информационный компонент наиболее выражен при умственном труде. При чтении, генерировании и обдумывании идей, творчестве он составляет 100%. Умственная работа связана с деятельностью целостного мозга, участием новой, старой и древней коры, особенно сенсорного центра речи, префронтальной области, лимбической системы, а также зрительного бугра, гипоталамуса, ретикулярной формации ствола мозга, всех сенсорных систем, преимущественно зрительной. Точные механизмы взаимосвязей всего комплекса структур мозга до настоящего времени полностью не изучены. Известно, что при деструкции префронтальной зоны коры больших полушарий человек теряет способность решать сложные задачи, быстро переключаться в мыслях, четко формулировать длинные фразы, выполнять движения, которым был обучен раньше. Нарушается способность к организованному мышлению, связыванию информации в единое целое, осуществлению ответных действий при поступлении сенсорных сигналов с некоторой задержкой во времени, в течение которого происходит интеграция поступающей информации и принимается оптимальное решение. Интеллектуальные процессы, лежащие в основе умственного труда, в целом осуществляются в лобных долях коры большого мозга. Они интегрируют сложные формы целенаправленного поведения, ответственны за решение творческих задач, требующих высокой степени абстрагирования.

В состоянии покоя энерготраты головного мозга не велики и составляют 3 % от общего обмена. Степень увеличения энерготрат зависит от характера нервно-эмоционального напряжения при умственной работе. При чтении вслух сидя прирост составляет 48%, при чтении лекции стоя— 94%. Высокий уровень метаболических процессов в нейронах обусловливает эволюционно развившуюся надежность их кислородного обеспечения. В покое головной мозг утилизирует 20 % от общего потребления О2, что обеспечивается большой объемной скоростью кровотока в сосудах мозга, составляющей 15 % от величины минутного объема кровотока (700—800 мл). Количество открытых капилляров, оплетающих нейроны, обусловлено уровнем функциональной активности определенных структур мозга. Вопрос об увеличении общего мозгового кровотока при умственной и физической деятельности дискутируется. Доминирует точка зрения о перераспределении кровотока на фоне незначительного его увеличения за счет расширения сосудов мозга. Череп, в котором помещается головной мозг, лимитирует прирост мозгового кровотока. Максимально его величина повышается в 1,5; 4—6; 5—7 раз меньше, чем соответственно в миокарде, коже и скелетных мышцах. Перераспределительные реакции мозгового кровотока четко дифференцированы, отличаются лабильностью соответственно преимущественному участию тех или иных структур мозга в умственной деятельности. Сложный и продолжительный умственный труд сопровождается максимальным увеличением мозгового кровотока в области лобных долей коры больших полушарий, несущих наибольшую нагрузку по переработке и интегрированию информации. Здесь в разгар активной работы кровоток может увеличиваться на 30— 50 % от уровня покоя (К. П. Иванов, Е. Б. Бабский, В. А. Пастухов).

Экспериментально установлено, что раздражение различных рецепторов сопровождается ограниченным изменением кровоснабжения в их первичных корковых проекциях — сенсомоторной, теменной, затылочной ипсилатеральной и контралатеральной областях.

Локальные усиление и уменьшение кровотока в премоторных и лобных областях коры большого мозга отмечены психологами при различных психоэмоциональных раздражениях и процессе абстрактного мышления.

Имеется связь между уровнем кровотока, выраженностью биоэлектрической активности коры большого мозга и уровнем умственной деятельности. За 3—5 с до усиления кровотока в мозге отмечается увеличение биопотенциалов, характеризующееся приростом их амплитуды и частоты.

Особенностью умственного труда является переработка и интеграция огромного объема информации в условиях ограничения двигательной активности (гиподинамия), что обусловлено спецификой рабочей позы, небольшими объемами рабочих движений. Преобладание позной активности над фазной, связанной с рабочими движениями преимущественно рук, ног или их сочетания, отрицательно влияет на функциональное состояние организма. Основной причиной, снижающей уровень функционального состояния при локальной работе, является ограничение потока рефлекторной стимуляции внутренних органов, желез внутренней секреции, симпатико-адреналовой системы со стороны проприоцепторов мышц. Нельзя исключить ослабление стимулирующих влияний на внутренние органы со стороны интероцепторов, воспринимающих механические толчки при фазной активности мышц. Соответствующие механизмы снижают все виды обмена веществ.

Интенсификация умственного труда в эпоху научно-технического прогресса сопровождается большим нервно-эмоциональным напряжением, как правило, связанным с необходимостью переработки большого количества информации в условиях дефицита времени. Большая нагрузка на зрительную сенсорную систему вызывает ее более быстрое по сравнению с другими системами утомление. Нервно-эмоциональное напряжение в сочетаний с гипокинезией прежде всего (через l'/2—2 ч) приводит к снижению функциональной активности нервной, мышечной и сердечно-сосудистой систем. Уменьшается тонус не принимающих участие в работе мышечных групп. Вследствие снижения мышечной активности ослабляются тонус сосудов, понижается АД, резко снижается скорость кровотока, уменьшается венозный возврат крови к сердцу — все это приводит к застою крови в области нижних конечностей и в брюшной полости. Аналогичная картина развивается при переутомлении.

При продолжительном умственном труде в течение дня тонус работающих мышц повышается. Наблюдается ограниченное повышение тонуса мышц, не принимающих непосредственное участие в операциях (например, от работающих мышц кисти к мышцам плеча и плечевого пояса).

Напряженная деятельность мышц кисти, предплечья, речедвигательного аппарата приводит к повышению тонуса сосудов и артериального давления.

Изменение положения позвоночника, связанное со статикой различных рабочих поз, со временем приводит к нарушению осанки и другим более серьезным дефектам позвоночника типа остеохондроза, что в свою очередь отрицательно сказывается на деятельности внутренних органов грудной, брюшной и тазовой полостей.

Снижение энергетического обмена при умственном труде, связанном с малой двигательной активностью, при обычном питании обусловливает прибавку массы тела, что является фактором риска для многих функциональных систем организма, в первую очередь для системы кровообращения. С целью устранения факторов риска в режиме умственного труда необходимо чередовать умственную работу с организованной двигательной активностью в виде занятий физической культурой.

После каждого часа умственной работы в перерывах необходимо проводить «физкультминутки», «физкультпаузы», производственную гимнастику, а подбор упражнений осуществлять с учетом специфики умственного труда и связанного с ним основного двигательного компонента.

15.10.2. Физиологическая характеристика физического труда

В основе физического труда в зависимости от особенностей профессии лежит активная целенаправленная двигательная деятельность человека. Она мотивирована генетическими и социальными потребностями человека и направлена на создание материальных благ для семьи, общества и др. Высшие формы мотивации создают в структурах головного мозга положительный психоэмоциональный фон, формирующий условия для эффективной реализации приобретенных в жизни трудовых двигательных навыков при различных видах физического труда. Мобилизация физиологических механизмов для выполнения физического труда происходит в соответствии с закономерностями работы функциональной системы (П. К. Анохин). Результаты труда оцениваются высшими отделами мозга на основе обратных связей. Характер физического труда человека весьма разнообразен и специфичен. Систематические занятия одним и тем же видом труда формируют в коре больших полушарий трудовой динамический стереотип, включающий рабочие двигательные навыки. Кроме моторного, двигательный навык имеет вегетативный компонент, обеспечивающий эффективную реализацию двигательного навыка за счет реакции перераспределения крови в пользу кровоснабжения и кислородного обеспечения работающих мышечных групп. В связи с этим большинство трудовых процессов выполняется экономично на уровне автоматизма, однако корковый сознательный контроль при этом никогда не отключается.

Преобладание двигательного компонента при физической работе над информационным определяет большие энергетические затраты организма на ее выполнение. Особенно большие энерготраты возникают при тяжелой физической работе с участием почти всех скелетных мышц. Такие виды физического труда встречаются в сельском хозяйстве, монтажных работах на высоте, литейных цехах, во время занятий спортом, связанным с метательными движениями, и др. При такой работе в ЦНС возникает мощный поток афферентных импульсов, рефлекторно активизирующих системы жизнеобеспечения и усиливающий корригирующие и трофические влияния ЦНС на органы и ткани.

Повышение обмена веществ при физической работе происходит градуально ее тяжести и сопровождается увеличением теплообразования и теплоотдачи. Процесс теплообразования опережает процесс теплоотдачи, что способствует повышению температуры тела.

При длительной напряженной работе (2 ч и более) температура тела увеличивается на 2—3 °С. Например, при беге на марафонские дистанции температура тела бегуна может достигать 39,5 °С.

Нарушение температурного гомеостаза в таких пределах может привести к резкому снижению физической работоспособности, тепловому удару, другим осложнениям, связанным с воздействием комплекса факторов внешней среды (таких, как температура, влажность).

Механизм усиления теплоотдачи состоит в увеличении потоотделения и потоиспарения, в расширении кожных сосудов под влиянием рефлекторных влияний и местных факторов (повышенная температура, наличие в крови недоокисленных продуктов обмена), а также гормонов (в том числе женских половых), способствующих расширению кожных капилляров. Интенсификация окислительно-восстановительных процессов при физической работе сопровождается накоплением в тканях, крови продуктов обмена (СО2, молочной кислоты, АМФ, мочевины, креатинина). Выведение продуктов распада почками в этих условиях ограничено за счет рефлекторного уменьшения кровообращения в почках при физической работе. Недостаточная выделительная функция почек компенсируется увеличением функции потовых желез. В условиях ограничения кровоснабжения почек развивается гипоксия почечной ткани, в результате чего изменяется количественный и качественный состав мочи в виде олигурии и протеинурии. Особенно выражены эти изменения у лиц, систематически занимающихся физической культурой.

Технизация производственных процессов в современных условиях во многом освободила человека от больших энергетических затрат и перевела его на операторскую деятельность, связанную с управлением машинами и механизмами.

Соблюдение стандартных норм и режимов физического труда оздоравливает человека. Одной из причин этого является удовлетворение генетической потребности организма человека в движениях (М. Р. Могендович), которая может реализоваться в виде спонтанной двигательной активности или в физическом труде. Физический труд способствует накоплению биоэнергетического потенциала организма, повышает умственную и физическую работоспособность за счет увеличения мощности и экономичности деятельности внутренних органов, оптимизации нервных и гормональных регуляций, координированного взаимодействия различных функциональных систем.

15.10.3. Взаимосвязь умственного и физического труда

Различия умственного и физического труда носят количественный характер участия в каждом из них информационного и двигательного компонентов. По мере научно-технического прогресса количественная разница стирается. В физическом труде в результате широкого использования различной техники возрос удельный вес информационного компонента, появилась необходимость более глубокого осмысления отдельных звеньев и трудового процесса в целом. Повысилась интеллектуальная и снизилась двигательная нагрузка на работников, занятых физическим трудом.

Продолжительный умственный труд снижает функциональную активность коры больших полушарий. Уменьшаются амплитуда и частота основных ритмов ЭЭГ. Развивающееся утомление носит центральный характер и обусловлено стимуляцией коры больших полушарий сигналами от напряженных скелетных мышц через ретикулярную формацию. Чем интенсивнее интеллектуальная нагрузка, тем более выражено мышечное напряжение при утомлении.

Темпы развития утомления при умственном труде определяются особенностями типа нервной системы человека. Лица с устойчивым и экономичным режимом нервной деятельности к концу рабочего дня сохраняют резервы умственной работоспособности; лица с неустойчивым, неэкономичным режимом испытывают духовное и физическое переутомление. Утомление при умственном труде не проявляется в виде выраженной усталости, возможно, потому, что с окончанием работы умственная деятельность не прекращается. В коре больших полушарий протекают следовые процессы, ослабляющие мышечное напряжение. Изменения в деятельности внутренних органов при умственной работе не имеют специфических черт и отличаются от таковых при физической работе только количественно. Утомление при физической работе характеризуется более выраженными признаками в виде субъективной усталости, покраснения кожи лица, обильного потоотделения, произвольного отказа продолжать работу. В. В. Фролькисом описан «феномен обрыва» физической работы у лиц пожилого возраста. Причиной отказа от продолжения физической работы может быть недостаточность мозгового кровообращения. При интенсивных физических нагрузках, сопровождающихся изменением гомеостаза (рН ниже 7,36), гемоциркуляция в коре больших полушарий возрастает и удерживается до определенного предела повышения мощности работы. Околопредельные нагрузки не вызывают подобного эффекта.

Физический труд стимулирует все функциональные отправления организма от обмена веществ до высшей интегративной деятельности мозга.

Умеренный физический труд способствует функциональному и физическому совершенствованию организма, по существу оздоровлению человека. Функциональное и физическое совершенствование обеспечивает высокую физическую и умственную работоспособность, нормальную осанку, высокую двигательную культуру за счет образования различных моторных координации, адекватное развитие физических качеств (силы, быстроты, выносливости и ловкости), необходимых для оптимальной адаптации человека к условиям труда и среды обитания. Разностороннее совершенствование повышает иммунную устойчивость, активность систем жизнеобеспечения, приспособление их деятельности в различных, в том числе в экстремальных, стрессовых ситуациях.

Чрезмерный физический труд, наоборот, истощает биоэнергетический потенциал организма и физиологические регуляторные механизмы, обеспечивающие биологическую и социальную адаптацию человека.

15.11. ОСНОВЫ ХРОНОФИЗИОЛОГИИ

Закономерности зависимости биологических процессов от времени изучает междисциплинарная наука хронобиология, частью которой является хронофизиология — наука о временной зависимости физиологических процессов. В состав хронобиологии входит и хрономедицина (часть ее — хронопатология) со многими ее разделами.

Составной частью хронобиологии является учение о биологических ритмах — биоритмология, одним из разделов которой выступает учение о ритмичности физиологических процессов. Изучение и значение организации функций во времени, их ритмичности имеет большое теоретическое и практическое значение для всех сторон жизни здорового и больного человека.

Биологическим ритмом (биоритмом) называется регулярное самоподдерживающееся и в известной мере автономное чередование во времени различных биологических процессов, явлений, состояний организма. Время, необходимое для завершения одного полного цикла ритмического процесса, называется его периодом, число циклов, совершающихся в единицу времени, — частотой ритма.

Акрофаза, т. е. фаза, в которой отмечается максимальное значение ритмически колеблющейся величины, может быть выражена в разной мере и повторяться с разной периодичностью.

Ритмичность биологических процессов — неотъемлемое свойство живой материи. Живые организмы в течение многих миллионов лет живут в условиях ритмических изменений геофизических параметров среды. Биоритмы — это эволюционно закрепленная форма адаптации, определяющая выживаемость организмов путем приспособления их к ритмически меняющимся условиям среды обитания. Закрепленность этих биоритмов обеспечила опережающий характер изменения функций, т. е. функции начинают меняться еще до того, как произойдут соответствующие изменения в окружающей среде. Опережающий характер изменений функций имеет глубокий адаптационный смысл и значение, предупреждая напряженность перестройки функций организма под влиянием уже действующих на него факторов.

15.11.1. Классификация биологических ритмов

Различают несколько классов ритмов разной частоты.

По классификации хронобиолога Ф. Халберга, ритмические процессы в организме делятся на три группы. К первой относятся ритмы высокой частоты с периодом до 1/2 ч. Ритмы средней частоты имеют период от '/2 ч до 6 сут. Третью группу составляют ритмы с периодом от 6 сут до 1 года (недельный, лунный, сезонный, годичный ритмы).

Выраженность и наибольшая изученность околосуточных биоритмов среди ритмов средней частоты взяты за «точку отсчета» и потому распространено их деление на околосуточные — циркадианные, или циркадные (circa — около, dies — день, лат.); ритмы с периодом более суток — инфрадианные (infra — меньше, лат., т. е. цикл повторяется меньше одного раза в сутки); ритмы с периодом меньше суток — ультрадианные (ultra — сверх, лат., т. е. частота больше одного раза в сутки). Существуют и другие, более детальные классификации биоритмов.

Примерами физиологических процессов, протекающих в циркадном ритме, являются чередование сна и бодрствования, суточные изменения температуры тела, работоспособности, мочеобразования, артериального давления и др. Инфрадианные биоритмы также многочисленны, например менструальный цикл у женщин, зимняя спячка у некоторых животных и др. Примерами ультрадианных ритмов являются фазы нормального сна, периодическая деятельность пищеварительного тракта, ритмы дыхания и сердечной деятельности и др.

15.11.2. Циркадианные ритмы у человека

Все или почти все виды деятельности человека связаны с временем суток, циклом бодрствование — сон. Температура тела на протяжении суток изменяется на 0,6—1,0 ° С (см. главу 11) и не зависит от того, спит или бодрствует человек. Температура тела зависит от активности человека и влияет на продолжительность сна. В наблюдениях в условиях длительной изоляции человека (проживание в пещере) со свободнотекущими ритмами отмечено, что если засыпание совпадает с минимальной температурой тела, то сон длится 8 ч; если человек засыпал при относительно высокой температуре тела, то длительность сна могла достигать 14 ч. В нормальных условиях люди с нормальным 24-часовым циклом бодрствование — сон обычно засыпают с понижением и просыпаются с подъемом температуры тела, не замечая этого. Суточный ритм температуры тела является очень прочным стереотипом, закрепленным в эволюционном развитии сменой дня и ночи, с характерными для них разной освещенностью, температурой окружающей среды, движением воздуха, геомагнитным воздействием и наконец различной активностью человека, который со времени существования вида Homo sapiens имел высокую активность в дневное время суток. Этим можно объяснить то, что со временем суток связана интенсивность основного обмена — он выше днем, чем ночью.

От времени суток зависят интенсивность мочеобразования и концентрация в крови регулирующих этот процесс гормонов. У здорового человека на дневное время приходится акрофаза экскреции воды, электролитов, продуктов азотистого обмена; на ночное время — экскреция аммиака и Н+. Клубочковая фильтрация днем выше, чем ночью, канальцевая реабсорбция воды выше ночью, чем днем. Акрофазы экскреции различных компонентов мочи несинхронны.

Не менее выражена циркадианная ритмичность деятельности сердечно-сосудистой системы. В ночное время снижаются частота сердечного ритма, артериальное и венозное давление.

В деятельности органов дыхания также выражены циркадианные изменения частоты и глубины дыхания, легочной вентиляции, объемов и емкостей легких с акрофазой в дневное время. При этом акрофазы сопротивления воздушному потоку в бронхах утром и вечером, а растяжимости легких наблюдают в 9 и 13 ч.

Характерные изменения претерпевает система крови: кроветворение в красном костном мозге наиболее интенсивно утром, селезенка и лимфатические узлы наиболее активны в 17— 20 ч. Максимальная концентрация гемоглобина в крови наблюдается с 11 до 13 ч, минимальная— в ночное время. Циркадианность характерна для числа эритроцитов и лейкоцитов в крови.

Минимальная СОЭ отмечается рано утром. С вечера в крови начинает уменьшаться содержание сывороточных белков. Характерную циркадианную динамику имеют содержание электролитов сыворотки крови, скорость свертывания крови. Следовательно, практически для всех показателей крови характерна циркадианная ритмичность.

Моторная и секреторная деятельность пищеварительного тракта натощак и после стимулирования приемом пищи существенно ниже в ночное, чем в дневное, время. Имеется циркадианная ритмичность резорбтивной активности пищеварительного тракта, пищеварительных и не пищеварительных функций печени.

Существенны циркадианные колебания концентрации гормонов в крови. Акрофаза для кортизола и пролактина приходится на 6 ч утра. В это время отмечается минимальная концентрация тиреотропного гормона. Акрофаза для инсулина отмечается около полудня, для ренина и самототропного гормона — в ночные часы, тестостерона — в ночные и утренние часы. Важно, что циркадианность характерна не только для секреции гормонов, но и реактивности к ним различных клеток и тканей.

Наличие циркадианной функциональной активности различных физиологических систем и органов рассматривается как один из диагностических критериев состояния здоровья, а нарушение циркадианной ритмичности в форме ее отсутствия или искажения — как показатель предпатологии и патологии. Например, у больных гипертонической болезнью акрофазы минутного и систолического объемов сердца и артериального давления передвинуты с дневного времени на ночное; выражена инверсия ритма уровня кетостероидов, возбудимости зрительных центров и ряда других функциональных показателей. У больных язвенной болезнью ночью не снижаются артериальное кровяное давление, уровень моторики и секреции желудка. Описано нарушение ритмичности экскреции с мочой ряда гормонов и электролитов при сахарном диабете.

Умственное и физическое утомление существенно изменяет ритмичность физиологических процессов. Это явление десинхроноза рассматривается как обязательный компонент стресса.

Существует точка зрения о биоритмологическом условном делении суток на три периода: первый — с 5 до 13 ч, когда преобладает влияние симпатической части автономной (вегетативной) нервной системы, усиливается обмен веществ, повышается работоспособность человека; второй период — с 13 до 21 ч, когда активность симпатической части понижается, постепенно уменьшается обмен веществ; третий период — ночной, когда повышен тонус парасимпатической части автономной нервной системы и значительно снижен обмен веществ.

Это деление условно по многим причинам, в частности потому, что выраженность ритмологических проявлений зависит от индивидуальных, в том числе типологических, особенностей человека, выработанного стереотипа времени сна и бодрствования и др. Специалисты, занимающиеся физиологией труда, считают, что максимальная работоспособность (и соответственно активность) существует в два временных периода: с 10 до 12 и с 16 до 18 ч, в 14 ч отмечен спад работоспособности, есть он и в вечернее время. Однако у большой группы людей (50 %) повышена работоспособность в утреннее время («жаворонки») или в вечернее и ночное время («совы»). Считается, что «жаворонков» больше в среде рабочих и служащих, а «сов» — среди представителей творческих профессий. Впрочем, есть мнение, что «жаворонки» и «совы» формируются в результате многолетнего, предпочтительно утреннего или вечернего, бдения. Во всяком случае эти особенности следует учитывать при индивидуализации режима труда, отдыха, приема пищи, что может повысить функциональную результативность.

Представляет интерес вопрос о том, как изменяются циркадианные ритмы человека в условиях добровольной изоляции от внешнего мира. Были проведены наблюдения за людьми, длительно (до полугода и более) находящимися в пещере и организующими свою активность и сон независимо от дня и ночи на поверхности Земли. У таких добровольцев в первые дни и недели оценка длительности суток могла укорачиваться (редко) и удлиняться (часто). При последующей изоляции «сутки» испытуемого стабильно удлинялись, приближаясь к 24,8-часовым «лунным суткам». В результате этого французский спелеолог Мишель Сиффр последний 179-й день своего пребывания в пещере оценил как 151-е сутки, считая каждые «сутки» за цикл бодрствование — сон.

В естественных условиях ритм физиологической активности человека синхронизирован с его социальной активностью, обычно высокой днем и низкой ночью. При перемещениях человека через временные пояса (особенно быстро на самолете через несколько временных поясов) наблюдается десинхронизация функций. Это проявляется в усталости, раздражительности, расстройстве сна, умственной и физической угнетенности; иногда наблюдаются расстройства пищеварения, изменения артериального давления. Эти ощущения и функциональные нарушения возникают в результате десинхронизации циркадианных закрепленных ритмов физиологических процессов с измененным временем световых суток (астрономических) и социальной активности в новом месте пребывания человека. Человек, покидая место своего постоянного или длительного жительства, как бы несет с собой на новое место ритм родных, прежних мест.

Через некоторое время эти ритмы согласуются, но для разных направлений перемещения человека и разных функций это время будет неодинаковым. При перелетах в западном направлении биологические часы отстают по отношению к 24-часовому солнечному циклу, и для приспособления к распорядку дня в новом месте должна произойти фазовая задержка биологических часов. При перелете в восточном направлении происходит их ускорение. Организму легче осуществить фазовую задержку, чем ускорение, поэтому после перелетов в западном направлении ритмы синхронизируются быстрее, чем при перелете в обратном направлении. Люди имеют существенные индивидуальные различия в скорости синхронизации ритмов при перемещениях. Скорость синхронизации прямо зависит от того, как скоро прилетевший на новое место человек включится в активную деятельность и сон по местному времени, насколько он в этом заинтересован.

Если поездка недлительная и предстоит скорое возвращение, то не стоит перестраивать на местное время свои биологические часы, так как предстоит их скорая возвратная «перенастройка». Это небезвредно для организма человека, если такие «перенастройки» частые, например у пилотов дальних авиалиний. Они предпочитают скорое возвращение и на новом месте недлительного пребывания биологические часы «не переводят на местное время».

Часто встречающимся видом десинхронизации биологического и социального ритмов активности является работа в вечернюю и ночную смену на предприятиях с круглосуточным режимом работы. Обычно рабочие и служащие этих предприятий работают одну неделю в утреннюю, вторую — в вечернюю и третью — в ночную смену. При переходе с одной смены на другую происходит десинхронизация биоритмов, и они не полностью восстанавливаются к следующей рабочей неделе, так как на перестройку биоритмов человека в среднем необходимо примерно 2 нед. У работников с напряженным трудом (например, авиадиспетчеры, авиапилоты, водители ночного транспорта) и переменной сменностью работы нередко наблюдается временная дезадаптация — десинхроноз. У этих людей нередко отмечаются различные виды патологии, связанные со стрессом, — язвенная болезнь, гипертония, неврозы. Это плата за нарушение циркадианных биоритмов. Существуют методы индивидуальной профилактики и коррекции десинхроноза.

Исследования связи эндогенных биоритмов с экзогенными датчиками ритмов в изолирующих человека от внешней среды камерах показали возможность «укоротить» сутки до 18 ч, постепенно изменяя продолжительность фаз сна и бодрствования. Попытка «сжать» сутки до 16 ч оказалась безуспешной, и у испытуемых проявлялись различные, в основном психические, расстройства.

«Удлинение» суток в условиях камеры испытуемыми переносилось несколько легче и функциональные расстройства у них отмечались при навязывании «суток» длительностью 40 ч и более.

Существенная зависимость функционального состояния человека от времени суток дает объяснение многим явлениям, в том числе преимущественной приуроченности приступов астмы и стенокардии, смерти к ночному времени.

Показаны циркадианные изменения реактивности организма человека, его органов и систем по отношению к токсинам и ряду фармакологических веществ. Описаны хронофармакологические эффекты гистамина, ацетилхолина, простагландинов, этанола, инсулина, АКТГ и ряда других эндогенных и экзогенных веществ. Это явление нашло применение в практической медицине при использовании разных дозировок препаратов в дневное и ночное время. Например, для большинства гипотензивных средств наиболее эффективен прием в 15—17 ч, когда начинается циркадианный подъем АД у больных гипертонической болезнью (максимум АД отмечается в 18—20 ч). Максимум реакции на введение гистамина отмечается от 21 ч 45 мин до 00 ч 50 мин с акрофазой в 23 ч 30 мин, поэтому антигистминные препараты рекомендуется вводить в 19—20 ч. Нашли объяснение различия результатов хирургических операций, выполненных в разное время суток. Такие примеры многочисленны и рассматриваются в соответствующих разделах медицины с учетом все обновляющихся клинических и экспериментальных данных ритмо-(хроно-) патологии.

15.11.3. Ультрадианные ритмы у человека

Этот класс ритмов достаточно распространен у человека и имеет разную периодичность для различных функций.

В течение суток несколько раз повышается и снижается со держание гормонов в крови. С периодом 90—100 мин претерпевает изменения электрическая активность коры большого мозга. Этим колебаниям ЭЭГ соответствуют изменения ряда психических процессов, в том числе внимания, мотивации. Показана (Н. Н. Лебедев) синхронность изменений ЭЭГ и периодической моторной активности пищеварительного тракта.

Для состояния сна (см. раздел 15.4.1) характерны 4 электроэнцефалографически определяемые фазы ультрадианной ритмичности, «быстрого», или «парадоксального», сна, или сна с быстрым движением глаз (БДГ). При нормальном ночном сне длительностью 7'/2 ч фаза обычно продолжается l'/2 — 2 ч. Электроэнцефалографический анализ циклов сна свидетельствует о его ультрадианной ритмичности.

Человек принимает пищу несколько раз в сутки, что связано с пищеварительными возможностями его желудочно-кишечного тракта. Такой прием пищи периодически активирует все висцеральные системы организма, повышает интенсивность обмена веществ и является причиной ультрадианной ритмичности ряда физиологических процессов. Прием пищи является не единственным фактором, влияющим на ультрадианный ритм физиологических функций.

15.11.4. Инфрадианные ритмы у человека

Многие инфрадианные ритмы прослежены у животных в виде сезонных изменений функций (зимняя спячка, сезонные изменения эндокринных, в том числе половых, функций и т. д.). Примером инфрадианного ритма у человека является менструальный цикл женщин, составляющий около 28 сут (см. главу 13).

Времена года (сезоны) оказывают выраженное влияние и хорошо проявляются в ритмичности изменения функций у многих животных. Элементы сезонного ритма есть и у человека. Полагают, что зимняя депрессия человека обусловлена уменьшением длительности светового дня. Сезонная ритмичность психических процессов имеет значительные индивидуальные особенности, различное эмоциональное восприятие времен года разными людьми. Этот класс биоритмов человека маскируется более физиологически значимыми воздействиями внешней и внутренней среды.

15.11.5. Биологические часы

У любого живого организма имеются чисто внутренние ритмы, обусловленные колебательными процессами в каждой клетке, ткани, физиологической системе. Если принять во внимание наличие циклических незатухающих химических процессов в живых и неживых системах, то можно предположить, что в живой клетке имеется несколько относительно стабильных по скорости процессов, лежащих в основе механизма водителя ритма данной клетки. На уровне клетки отсчет времени ведут процессы транспорта ионов через мембраны. Популярна биоритмологическая гипотеза, согласно которой исходным измерителем времени является скорость взаимодействия молекул РНК и ДНК в клетке.

Механизмы отсчета времени имеют все клетки, но некоторые из них обладают повышенной реактивностью к различным параметрам внутренней и окружающей среды и в данной физиологической системе становятся водителем ритма, отсчитывая каждый период функционального цикла. Совокупность механизмов отсчета времени разного уровня получила название биологических часов. Полагают, что эти часы измеряют ограниченные отрезки времени, отсчитывая один цикл, но не суммируют совокупность измеряемых периодов. Биологическими часами не суммируются с предыдущим отсчетом ни ультра-, ни инфра-, ни циркадианные, ни прочие ритмы. Тем не менее существуют «большие» биологические часы, отсчитывающие длительность жизни. Они констатируют суммарные изменения в гомеостазе организма от момента его рождения до смерти. «Большие» биологические часы «идут» неравномерно. Многие факторы влияют на них, ускоряя (факторы риска) или замедляя их ход, укорачивая или удлиняя жизнь.

В сознании человека оцениваются длительность явлений или событий, интервалов между ними, последовательность событий, их локализация во времени, скорость, частота и темп событий, ритмичность (или аритмичность). Следовательно, оценивается не абсолютное время, а временные отношения событий.

Механизм восприятия времени и его «отсчета» в нашем сознании нельзя признать достаточно исследованным. В настоящее время полагают, что восприятие времени оценивается ритмически протекающими физиологическими процессами, в ходе которых от рецепторов различных органов поступают импульсы в кору большого мозга, где формируется представление о временной структуре событий. Такие импульсы поступают от скелетных мышц, ритмически функционирующих висцеральных органов (сердце, легкие, пищеварительный тракт). Оценка времени изменяется также в зависимости от эмоционального состояния человека, его типологических особенностей, возраста, многих внешних факторов, интенсивности обменных процессов и т. д.

15.11.6. Пейсмекеры биологических ритмов млекопитающих

Ритмозадающий стимул может быть внешним и внутренним. Формирование внутреннего ритмозадающего механизма эволюционно связано с систематическими внешними воздействиями, такими как смена дня и ночи. В наибольшей мере в таком плане изучен механизм циркадианного ритма у птиц, меньше он исследован у млекопитающих.

В конце 60-х годов Курт Рихтер провел огромное число экспериментов на крысах, у которых учитывалась циркадианная ритмичность двигательной активности, приема пищи, питья воды при интактном мозге и после стереотаксического разрушения его в 200 разных местах. В результате этих опытов было установлено, что нарушение циркадианных ритмов происходит при повреждении определенного участка гипоталамуса. Этот участок — супрахиазмальные ядра — получает импульсы от сетчатки глаз через особый нервный путь. У млекопитающих, а возможно, и у человека эти ядра ответственны за циркадианную ритмичность физиологических процессов. В опытах на крысах было показано, что отдельные нейроны этих ядер спонтанно генерируют электрические разряды в их циркадианном ритме сна и бодрствования. Эти опыты позволили заключить, что по крайней мере у крыс внутренним пейсмекером циркадианного ритма являются нейроны супрахиазмальных ядер гипоталамуса. Клинические наблюдения свидетельствуют, что у человека при поражениях этих ядер опухолью происходят глубокие нарушения ритма сна и бодрствования.

Вряд ли циркадианный ритм различных физиологических процессов управляется одним пейсмекером. Например, в опытах на обезьянах установлено, что повреждение супрахиазмальных ядер нарушает циркадианную ритмичность приема пищи, воды, двигательной активности, но сохраняется суточный цикл температуры тела, который находится под контролем другого пейсмекера.

В экспериментах на животных и в наблюдениях на людях отмечено, что одни физиологические функции изменяются синхронно и их ритмичность утрачивается совместно, а другие функции при этом ритмичность сохраняют (например, не одновременно рассогласовываются ритмы температуры тела, бодрствования — сна). Полагают, что в нашем организме не менее двух пейсмекеров, задающих ритм функций. «Не менее двух» не исключает наличия множества связанных между собой пейсмекеров. Не зря говорится, что гармония ритмов — необходимое условие свободной жизни организмов.

Для человека большое значение в формировании ритма активности имеют внешние, особенно социальные, сигналы в виде деятельности в различное время суток, групповая деятельность, в которой ритм задает деятельность коллектива. Это немаловажно в оценке результатов наблюдений за биоритмами одного длительно изолированного человека, тяжело переживающего вместе с другими факторами и свое одиночество.

Следует признать, что основной циркадианный ритм человека формируется под влиянием внутренних пейсмекеров и множества внешних сигналов, которые влияют на временные пейсмекеры и минуя их. Эволюционно оказался закрепленным и «лунный месяц» в ритмичности физиологических процессов (менструальный цикл), так как Луна оказывает влияние на ряд земных явлений, которые в свою очередь воздействуют на живые организмы, и они адаптивно изменяют свои функции. К физическим синхронизаторам относятся также колебания температуры и влажности воздуха, барометрического давления, напряженности электрического и магнитного полей Земли, меняющихся и в связи с солнечной активностью, также имеющей периодичность. С солнечной активностью А. Л. Чижевский справедливо связывал «эхо солнечных бурь» —ряд заболеваний человека.

Hosted by uCoz