Глава 3.   ПРИНЦИПЫ   ОРГАНИЗАЦИИ УПРАВЛЕНИЯ ФУНКЦИЯМИ

3.1. УПРАВЛЕНИЕ В ЖИВЫХ ОРГАНИЗМАХ

Организм как единое целое может существовать только при условии, когда составляющие его органы и ткани функционируют с такой интенсивностью и в таком объеме, которые обеспечивают адекватное уравновешивание со средой обитания. По словам И. П. Павлова, живой организм — сложная обособленная система, внутренние силы которой постоянно уравновешиваются с внешними силами окружающей среды. В основе уравновешивания лежат про­цессы регуляции, управления физиологическими функциями.

Управление, или регуляция, в живых организмах пред­ставляет собой совокупность процессов, обеспечивающих необходи­мые режимы функционирования, достижение определенных целей или полезных для организма приспособительных результатов. Уп­равление возможно при наличии взаимосвязи органов и систем организма. Процессы регуляции охватывают все уровни организации системы: молекулярный, субклеточный, клеточный, органный, сис­темный, организменный, надорганизменный (популяционный, экосистемный, биосферный). Законы управления в сложных системах изучает кибернетика — наука об общих принципах управления в машинах, живых системах и обществе. Медицинская, физиологи­ческая кибернетика изучает процессы управления в живых орга­низмах.

Принципы управления. С позиций медицинской кибернетики, управление в живых организмах осуществляется управляющей си­стемой. Она включает в себя датчики, воспринимающие информа­цию на входе (сенсорные рецепторы) и выходе (рецепторы испол­нительных структур) системы, входные и выходные каналы связи (жидкие среды организма, нервные проводники), управляющее ус­тройство (центральная нервная система), частью которого является запоминающее устройство (аппараты памяти). Информация, фик­сированная в аппаратах памяти, определяет «настройку» системы управления на переработку определенных сведений, поставляемых через каналы связи.

Управление осуществляется с использованием двух основных принципов: 1) по рассогласованию (отклонению); 2) по возмущению.

Управление по рассогласованию предусматривает на­личие механизмов, способных определить разность между задавае­мым и фактическим значением регулируемой величины или функции. Эта разность используется для выработки регулирующего воздействия на объект регуляции, которое уменьшает величину отклонения. Примером такого управления является стимуляция об­разования глюкозы при уменьшении ее содержания в крови. Это уменьшение определяется клетками гипоталамуса, которые стиму­лируют выработку адренокортикотропного гормона в гипофизе. По­следний усиливает образование глюкокортикоидов (кортизола) в надпочечниках. Кортизол стимулирует в печени образование глю­козы из аминокислот (глюконеогенез), что приводит к восстанов­лению нормального содержания глюкозы в плазме крови.

Управление по возмущению предусматривает исполь­зование самого возмущения для выработки, компенсирующего воз­действия, в результате которого регулируемый показатель возвра­щается к исходному состоянию. Например, уменьшение парциаль­ного давления О2 в атмосферном воздухе при подъеме на высоту является возмущающим воздействием для системы дыхания, обес­печивающей оптимальное для метаболизма содержание кислорода в крови. Увеличение частоты и глубины дыхания, скорости крово­тока, количества эритроцитов в крови отражает процессы регуляции по возмущению, направленные на восстановление исходных пока­зателей содержания кислорода.

Способы управления в организме. Основные способы управления в живом организме предусматривают запуск (инициацию), коррек­цию и координацию физиологических процессов.

Запуск представляет собой процесс управления, вызывающий переход функции органа от состояния относительного покоя к де­ятельному состоянию или от активной деятельности к состоянию покоя. Например, при определенных условиях центральная нервная система инициирует работу пищеварительных желез, фазные со­кращения скелетной мускулатуры, процессы мочевыведения, дефе­кации и др.

Коррекция позволяет управлять деятельностью органа, осуществляющего физиологическую функцию в автоматическом режиме или инициированную поступлением управляющих сигналов. При­мером может служить коррекция работы сердца центральной нервной системой посредством влияний, передаваемых по блуждающим и симпатическим нервам.

Координация предусматривает согласование работы несколь­ких органов или систем одновременно для получения полезного приспособительного результата. Например, для осуществления акта прямохождения необходима координация работы мышц и центров, обеспечивающих перемещение нижних конечностей в пространстве, смещение центра тяжести тела, изменение тонуса скелетных мышц.

Механизмы управления. Условно можно разделить на гумораль­ный и нервный.

Гуморальный механизм управления предусматривает из­менение физиологической активности органов и систем под влиянием химических веществ, доставляемых через жидкие среды организма (интерстициальная  жидкость,  лимфа,   кровь,  цереброспинальная жидкость и др.). Гуморальный механизм управления является древ­нейшей формой взаимодействия клеток, органов и систем, поэтому в организме человека и высших животных можно найти различные варианты гуморального механизма регуляции, отражающие в изве­стной мере его эволюцию. Одним из простейших вариантов является изменение деятельности клеток под влиянием продуктов обмена веществ. Последние могут изменять работу клетки, из которой происходит выделение этих продуктов, и других органов, располо­женных на достаточном удалении. Например, под влиянием СО2, образующегося в тканях в результате утилизации кислорода, изме­няется активность центра дыхания и как следствие — глубина и частота дыхания. Под влиянием адреналина, выделяемого в кровь из надпочечников, изменяются частота и сила сердечных сокраще­ний, тонус периферических сосудов, ряд функций центральной нер­вной системы, интенсивность обменных процессов в скелетных мыш­цах, увеличиваются коагуляционные свойства крови.

Для гуморального механизма управления характерны относи­тельно медленное распространение и диффузный характер управ­ляющих воздействий, низкая надежность осуществления связи.

Нервный механизм управления предусматривает измене­ние физиологических функций под влиянием управляющих воздей­ствий, передаваемых из центральной нервной системы по нервным волокнам к органам и системам организма. Нервный механизм является более поздним продуктом эволюции по сравнению с гу­моральным, он более сложен и более совершенен. Для него харак­терна высокая скорость распространения и точная передача объекту регулирования управляющих воздействий, высокая надежность осу­ществления связи.

В естественных условиях нервный и гуморальный механизмы работают как единый нейрогуморальный механизм управления.

Нейрогуморальный механизм управления представля­ет собой комбинированную форму, в которой одновременно исполь­зуются гуморальный и нервный механизмы; оба взаимосвязаны и взаимообусловлены. Так, передача управляющих воздействий с нер­ва на иннервируемые структуры осуществляется с помощью хими­ческих посредников — медиаторов, действующих на специфические рецепторы. Еще более тесная и сложная связь обнаружена в неко­торых ядрах гипоталамуса. Нервные клетки этих ядер приходят в активное состояние при изменении химических и физико-химиче­ских показателей крови. Активность этих клеток вызывает образо­вание и выделение химических факторов, стимулирующих восста­новление исходных характеристик крови. Так, на повышение осмо­тического давления плазмы крови реагируют специальные нервные клетки супраоптического ядра гипоталамуса, активность которых приводит к выделению в кровь антидиуретического гормона, уси­ливающего реабсорбцию воды в почках, что обусловливает снижение осмотического давления.

Взаимодействие гуморального и нервного механизмов создает интегративный вариант управления, способный обеспечить адекватное изменение функций от клеточного до организменного уровней при изменении внешней и внутренней среды.

Средства управления. Управление физиологическими функция­ми осуществляется посредством передачи информации. Информация может содержать сообщение о наличии возмущающих воздействий, отклонение функций. Она передается по афферентным (чувстви­тельным) каналам связи. Информация, передаваемая по эфферен­тным (исполнительным) каналам связи, содержит сообщение о том, какие функции и в каком направлении следует изменять.

Гуморальный механизм в качестве средств управления и передачи информации использует химические вещества — продукты обмена веществ, простагландины, регуляторные пептиды, гормоны и др. Так, накопление молочной кислоты в мышцах при физической нагрузке является источником информации о недостатке кислорода.

Нервный механизм в качестве средства управления, передачи информации использует потенциалы возбуждения (ПД, им­пульсы), которые объединяются в определенные паттерны («рисун­ки» возбуждения) по частоте, набору в «пачках», характеристикам межимпульсных интервалов и кодируют необходимую информацию. Показано, что паттерны возбуждений гипоталамических нейронов при формировании мотивации голода специфичны и существенно отличаются от столь же специфичных паттернов возбуждений ней­ронов, ответственных за формирование мотивации жажды.

Формы управления. Гуморальный и нервный механизмы предусматривают использование нескольких форм управления. Аутокринная, паракринная и гуморальная формы характерны для эволюционно более древнего механизма.

Аутокринная форма управления предполагает изменение функции клетки химическими субстратами, выделяемыми в межклеточную среду самой клеткой.

Паракринная форма управления основана на выделении клетками химических средств управления в межтканевую жидкость. Химические субстраты, распространяясь по межтканевым простран­ствам, могут управлять функцией клеток, расположенных на неко­тором удалении от источника управляющих воздействий.

Гуморальная форма управления реализуется при выделе­нии биологических веществ в кровь. С током крови эти вещества достигают всех органов и тканей.

В основе нервного механизма управления лежит рефлекс — ответная реакция организма на изменения внутренней и внешней среды, осуществляемая при участии центральной нервной системы. Управление посредством рефлексов предусматривает использование двух форм.

Местные рефлексы осуществляются через ганглии автономной нервной системы, которые рассматриваются как нервные центры, вынесенные на периферию. За счет местных рефлексов происходит управление, например моторной и секреторной функциями тонкой и толстой кишки.

Центральные рефлексы протекают с обязательным вовлечением различных уровней центральной нервной системы (от спинного мозга до коры большого мозга). Примером таких рефлексов является выделение слюны при раздражении рецепторов полости рта, опу­скание века при раздражении склеры глаза, отдергивание руки при раздражении кожи пальцев и др.

В естественных условиях нервный и гуморальный механизмы едины и, образуя нейрогуморальный механизм, реализуются в раз­нообразных комбинациях, наиболее полно обеспечивающих адек­ватное уравновешивание организма со средой обитания. Например, физиологически активные вещества, поступая в кровь, несут ин­формацию в ЦНС об отклонении какой-либо функции. Под влиянием этой информации формируется поток управляющих нервных им­пульсов к эффекторам для коррекции отклонения.

В других случаях поступление информации в ЦНС по нервным каналам приводит к выделению гормонов, корригирующих возник­шие отклонения. Нейрогуморальный механизм создает в процессах управления многозвенные кольцевые связи, где различные формы гуморального механизма сменяются и дополняются нервными, а последние обеспечивают включение гуморальных.

3.2. САМОРЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ

В процессе эволюции живых организмов внутренняя среда была отделена от внешней и приобрела устойчивый, консервативный ха­рактер.

Французский исследователь К. Бернар писал, что условием сво­бодного поведения живого организма является постоянство внутрен­ней среды. По его мнению, все жизненные процессы имеют одну цель — поддержание постоянства условий жизни во внутренней среде организма. Позднее эта мысль нашла воплощение в трудах американского физиолога У. Кеннона в форме учения о гомеостазе.

Гомеостаз — относительное динамическое постоянство внут­ренней среды и устойчивость физиологических функций организма. Основным механизмом поддержания гомеостаза является саморегу­ляция.

Саморегуляция представляет собой такой вариант управ­ления, при котором отклонение какой-либо физиологической фун­кции или характеристик (констант) внутренней среды от уровня, обеспечивающего нормальную жизнедеятельность, является причи­ной возвращения этой функции (константы) к исходному уровню. В ходе естественного отбора живыми организмами выработаны общие механизмы управления процессами приспособления к среде обитания различной физиологической природы (эндокринные, нейрогуморальные, иммунологические и др.), направленные на обеспечение отно­сительного постоянства внутренней среды. У человека и высших животных гомеостатические механизмы достигли совершенства.

Практически все характеристики внутренней среды (константы) организма непрерывно колеблются относительно средних уровней, оптимальных для протекания устойчивого обмена веществ. Эти уров­ни отражают потребность клеток в необходимом количестве исход­ных продуктов обмена. Допустимый диапазон колебаний для разных констант различен. Незначительные отклонения одних констант могут приводить к существенным нарушениям обменных процес­сов — это так называемые жесткие константы. К ним относятся, например, осмотическое давление, величина водородного показателя (рН), содержание глюкозы, О2, СО2 в крови.

Другие константы могут варьировать в довольно широком диа­пазоне без существенных нарушений физиологических функций — это так называемые пластичные константы. К их числу относят количество и соотношение форменных элементов крови, объем цир­кулирующей крови, скорость оседания эритроцитов.

Процессы саморегуляции основаны на использовании прямых и обратных связей. Прямая связь предусматривает выработку управляющих воздействий на основании информации об отклонении константы или действии возмущающих факторов. Например, раз­дражение холодным воздухом терморецепторов кожи приводит к увеличению процессов теплопродукции.

Обратные связи заключаются в том, что выходной, регу­лируемый сигнал о состоянии объекта управления (константы или функции) передается на вход системы. Различают положительные и отрицательные обратные связи. Положительная обратная связь усиливает управляющее воздействие, позволяет управлять значи­тельными потоками энергии, потребляя незначительные энергети­ческие ресурсы. Примером может служить увеличение скорости образования тромбина при появлении некоторого его количества на начальных этапах коагуляционного гемостаза.

Отрицательная обратная связь ослабляет управляющее воз­действие, уменьшает влияние возмущающих факторов на работу управляющих объектов, способствует возвращению измененного по­казателя к стационарному уровню. Например, информация о степени натяжения сухожилия скелетной мышцы, поступающая в центр управления функций этой мышцы от рецепторов Гольджи, ослабляет степень возбуждения центра, чем предохраняет мышцу от развития избыточной силы сокращения. Отрицательные обратные связи по­вышают устойчивость биологической системы — способность воз­вращаться к первоначальному состоянию после прекращения воз­мущающего воздействия.

В организме обратные связи построены по принципу иерархии (подчиненности) и дублирования. Например, саморегуляция работы сердечной мышцы предусматривает наличие обратных связей от рецепторов самой сердечной мышцы, рецепторных полей магист­ральных сосудов, рецепторов, контролирующих уровень тканевого дыхания, и др.

Гомеостаз организма в целом обеспечивается согласованной со­дружественной работой различных органов и систем, функции ко­торых поддерживаются на относительно постоянном уровне процес­сами саморегуляции.

3.3. СИСТЕМНАЯ ОРГАНИЗАЦИЯ УПРАВЛЕНИЯ. ФУНКЦИОНАЛЬНЫЕ СИСТЕМЫ И ИХ ВЗАИМОДЕЙСТВИЕ

Представление о саморегуляции физиологических функций на­шло наиболее полное отражение в теории функциональных систем, разработанной академиком П. К. Анохиным. Согласно этой теории, уравновешивание организма со средой обитания осуществляется самоорганизующимися функциональными системами.

Функциональные системы (ФС) представляют собой динамически складывающийся саморегулирующийся комплекс цент­ральных и периферических образований, обеспечивающий достиже­ние полезных приспособительных результатов.

Результат действия любой ФС представляет собой жизненно важный адаптивный показатель, необходимый для нормального фун­кционирования организма в биологическом и социальном плане. Отсюда вытекает системообразующая роль результата действия. Именно для достижения определенного адаптивного результата скла­дываются ФС, сложность организации которых определяется харак­тером этого результата.

Многообразие полезных для организма приспособительных ре­зультатов может быть сведено к нескольким группам: 1) метабо­лические результаты, являющиеся следствием обменных процессов на молекулярном (биохимическом) уровне, создающими необхо­димые для жизнедеятельности субстраты или конечные продукты; 2) гомеопатические результаты, представляющие собой ведущие показатели жидких сред организма: крови, лимфы, интерстициальной жидкости (осмотическое давление, рН, содержание пита­тельных веществ, кислорода, гормонов и т. д.), обеспечивающие различные стороны нормального обмена веществ; 3) результаты поведенческой деятельности животных и человека, удовлетворяю­щие основные метаболические, биологические потребности: пище­вые, питьевые, половые и др.; 4) результаты социальной деятельности человека, удовлетворяющие социальные (создание общественного продукта труда, охрана окружающей среды, защита отечества, обустройство быта) и духовные (приобретение знаний, творчество) потребности.

В состав каждой ФС включаются различные органы и ткани. Объединение последних в ФС осуществляется результатом, ради достижения которого создается ФС. Этот принцип организации ФС получил название принципа избирательной мобилизации деятель­ности органов и тканей в целостную систему. Например, для обес­печения оптимального для метаболизма газового состава крови про­исходит избирательная мобилизация в ФС дыхания деятельности легких, сердца, сосудов, почек, кроветворных органов, крови.

Включение отдельных органов и тканей в ФС осуществляется по принципу взаимодействия, который предусматривает активное участие каждого элемента системы в достижении полезного при­способительного результата.

В приведенном примере каждый элемент активно способствует поддержанию газового состава крови: легкие обеспечивают газооб­мен, кровь связывает и транспортирует О2 и СО2, сердце и сосуды обеспечивают необходимую скорость движения крови и величину.

Рис. 3.1. Общая архитектура функциональной системы, определяющей целенаправ­ленную деятельность организма на основе внутренней потребности. I — афферентный синтез; 1 — обстановочная афферентация, 2 — пусковая афферентация, 3 — мотивация, 4 — память; II — принятие решения; III — акцептор результатов действия; IV — программа действия (эфферентный синтез): 5 — поведенческая деятельность; V — результат поведения; VI — параметры результата; 6, 9 — обратная афферентация; VII — метаболизм; VIII — показатель гомеостаза; 7 — гуморальные влияния; IX — рецепторы; 8 — нервные влияния. Сплошной линией сверху обозначены границы поведенческого акта.

Для достижения результатов различного уровня формируются и разноуровневые ФС. ФС любого уровня организации имеет принципиально однотипную структуру, которая включает в себя 5 ос­новных компонентов: 1) полезный приспособительный результат; 2) акцепторы результата (аппараты контроля); 3) обратную афферентацию, поставляющую информацию от рецепторов в центральное звено ФС; 4) центральную архитектонику — избирательное объ­единение нервных элементов различных уровней в специальные узловые механизмы (аппараты управления); 5) исполнительные ком­поненты (аппараты реакции) — соматические, вегетативные, эн­докринные, поведенческие. Схема функциональной системы по П. К. Анохину представлена на рис. 3.1.

Состояние внутренней среды постоянно контролируется соответствующими рецепторами. Источником изменения параметров внут­ренней среды организма является непрерывно текущий в клетках процесс обмена веществ (метаболизм), сопровождающийся потреб­лением исходных и образованием конечных продуктов. Любое от­клонение параметров от показателей, оптимальных для метаболизма, равно как и изменение результатов иного уровня, воспринимается рецепторами. От последних информация передается звеном обратной связи в соответствующие нервные центры. На основе поступающей информации происходит избирательное вовлечение в данную ФС структур различных уровней центральной нервной системы для мобилизации исполнительных органов и систем (аппаратов реакции). Деятельность последних приводит к восстановлению необходимого для метаболизма или социальной адаптации результата.

Организация различных ФС в организме принципиально одина­кова. В этом заключается принцип изоморфизма ФС.

Вместе с тем в их организации есть и отличия, которые обусловле­ны характером результата. ФС, определяющие различные показатели внутренней среды организма, генетически детерминированы, часто включают в себя только внутренние (вегетативные, гуморальные) ме­ханизмы саморегуляции. К их числу можно отнести ФС, определяю­щие оптимальный для метаболизма тканей уровень массы крови, фор­менных элементов, реакции среды (рН), кровяного давления. Другие ФС гомеостатического уровня включают в себя и внешнее звено само­регуляции, предусматривающее взаимодействие организма с внешней средой. В работе некоторых ФС внешнее звено играет относительно пассивную роль источника необходимых субстратов (например, кис­лорода для ФС дыхания), в других внешнее звено саморегуляции ак­тивно и включает целенаправленное поведение человека в среде оби­тания, направленное на ее преобразование. К их числу относится ФС, обеспечивающая оптимальный для организма уровень питательных веществ, осмотического давления, температуры тела.

ФС поведенческого и социального уровня чрезвычайно динамичны по своей организации и формируются по мере возникновения соответ­ствующих потребностей. В таких ФС внешнее звено саморегуляции играет ведущую роль. Вместе с тем поведение человека определяется и корригируется генетически, индивидуально приобретенным опы­том, а также многочисленными возмущающими воздействиями. При­мером таких ФС является производственная деятельность человека по достижению социально значимого для общества и индивида результа­та: творчество ученых, художников, писателей.

Аппараты управления ФС. По принципу изоморфизма построена и центральная архитектоника (аппараты управления) ФС, складыва­ющаяся из нескольких стадий (см. рис. 3.1). Исходной является ста­дия афферентного синтеза. В ее основе лежит доминирую­щая мотивация, возникающая на базе наиболее значимой в данный момент потребности организма. Возбуждение, создаваемое доминиру­ющей мотивацией, мобилизует генетический и индивидуально приоб­ретенный опыт (память) по удовлетворению данной потребности. Информация о состоянии среды обитания, поставляемая обстановоч­ной афферентацией, позволяет в конкретной обстановке оценить воз­можность и при необходимости скорректировать прошлый опыт удов­летворения потребности. Взаимодействие возбуждений, создаваемых доминирующей мотивацией, механизмами памяти и обстановочной афферентацией, создает состояние готовности (предпусковой интег­рации), необходимое для получения адаптивного результата. Пуско­вая афферентация переводит систему из состояния готовности в со­стояние деятельности. В стадии афферентного синтеза доминирующая мотивация определяет, что делать, память — как делать, обстановоч­ная и пусковая афферентация — когда делать, чтобы достичь необхо­димого результата.

Стадия афферентного синтеза завершается принятием ре­шения. В этой стадии из многих возможных избирается единст­венный путь для удовлетворения ведущей потребности организма. Происходит ограничение степеней свободы деятельности ФС.

Вслед за принятием решения формируются акцептор результа­та действия и программа действия. В акцепторе результатов дейст­вия программируются все основные черты будущего результата дей­ствия. Это программирование происходит на основе доминирующей мотивации, которая извлекает из механизмов памяти необходимую информацию о характеристиках результата и путях его достижения. Таким образом, акцептор результатов действия представляет собой аппарат предвидения, прогнозирования, моделирования итогов дея­тельности ФС, где моделируются и сопоставляются параметры резуль­тата с афферентной моделью. Информация о параметрах результата поставляется с помощью обратной афферентации.

Программа действия (эфферентный синтез) представляет собой согласованное взаимодействие соматических, вегетативных и гуморальных компонентов в целях успешного достижения полезного приспособительного результата. Программа действия формирует не­обходимый приспособительный акт в виде определенного комплекса возбуждений в ЦНС до начала его реализации в виде конкретных действий. Эта программа определяет включение эфферентных струк­тур, необходимых для получения полезного результата.

Необходимое звено в работе ФС — обратная афферентация. С ее помощью оцениваются отдельные этапы и конечный результат деятельности систем. Информация от рецепторов поступает по афферентным нервам и гуморальным каналам связи к структурам, составляющим акцептор результата действия. Совпадение пара­метров реального результата и свойств заготовленной в акцепторе его модели означает удовлетворение исходной потребности орга­низма. Деятельность ФС на этом заканчивается. Ее компоненты могут быть использованы в других ФС. При несовпадении пара­метров результата и свойств модели, заготовленной на основании афферентного синтеза в акцепторе результатов действия, возникает ориентировочно-исследовательская реакция. Она приводит к пере­стройке афферентного синтеза, принятию нового решения, уточ­нению характеристик модели в акцепторе результатов действия и программы по их достижению. Деятельность ФС осуществляется в новом, необходимом для удовлетворения ведущей потребности направлении.

Принципы взаимодействия ФС. В организме работает одновре­менно несколько функциональных систем, что предусматривает их взаимодействие, которое строится на определенных принципах.

Принцип системогенеза предполагает избирательное созревание и инволюцию функциональных систем. Так, ФС кровообращения, дыхания, питания и их отдельные компоненты в процессе онтогенеза созревают и развиваются раньше других ФС.

Принцип мультипараметрического (многосвязного) взаимодей­ствия  определяет  обобщенную деятельность различных ФС,   направленную на достижение многокомпонентного результата. Напри­мер, параметры гомеостаза (осмотическое давление, КОС и др.) обеспечиваются самостоятельными ФС, которые объединяются в единую обобщенную ФС гомеостаза. Она и определяет единство внутренней среды организма, а также ее изменения вследствие процессов обмена веществ и активной деятельности организма во внешней среде. При этом отклонение одного показателя внутренней среды вызывает перераспределение в определенных соотношениях других параметров результата обобщенной ФС гомеостаза.

Принцип иерархии предполагает, что ФС организма выстраива­ются в определенный ряд в соответствии с биологической или со­циальной значимостью. Например, в биологическом плане домини­рующее положение занимает ФС, обеспечивающая сохранение це­лостности тканей, затем — ФС питания, воспроизведения и др. Деятельность организма в каждый временной период определяется доминирующей ФС в плане выживания или адаптации организма к условиям существования. После удовлетворения одной ведущей потребности доминирующее положение занимает другая наиважней­шая по социальной или биологической значимости потребность.

Принцип последовательного динамического взаимодействия предусматривает четкую последовательность смены деятельности нескольких взаимосвязанных ФС. Фактором, определяющим начало деятельности каждой последующей ФС, является результат деятель­ности предыдущей системы. Еще одним принципом организации взаимодействия ФС является принцип системного квантования жизнедеятельности. Например, в процессе дыхания можно выделить следующие системные «кванты» с их конечными результатами: вдох и поступление некоторого количества воздуха в альвеолы; диффузия О2 из альвеол в легочные капилляры и связывание О2 с гемоглобином; транспорт О2 к тканям; диффузия О2 из крови в ткани и СО2 в обратном направлении; транспорт СО2 к легким; диффузия СО2 из крови в альвеолярный воздух; выдох. Принцип системного кванто­вания распространяется на поведение человека.

Таким образом, управление жизнедеятельностью организма пу­тем организации ФС гомеостатического и поведенческого уровней обладает рядом свойств, позволяющих адекватно адаптировать ор­ганизм к изменяющейся внешней среде. ФС позволяет реагировать на возмущающие воздействия внешней среды и на основе обратной аффектации перестраивать деятельность организма при отклонении параметров внутренней среды. Помимо этого, в центральных меха­низмах ФС формируется аппарат предвидения будущих результа­тов — акцептор результата действия, на основе которого происходит организация и инициация опережающих действительные события адаптивных актов, что существенно расширяет приспособительные возможности организма. Сравнение параметров достигнутого резуль­тата с афферентной моделью в акцепторе результатов действия служит основой для коррекции деятельности организма в плане получения именно тех результатов, которые наилучшим образом обеспечивают процесс адаптации.

Hosted by uCoz